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20. (continued)

The theoretical formulation pertains to a bubble In a fluid which
is infinite in extent and contains no barriers or interfaces apart from
the bubble surface. An external flow can be imposed, imparting a stress
history. In addition, a spherical bubble profile, obtained from present
experiments or theories, dictates a volume change and drives the non-
sphericities.f 7

Surface tension and inertial forces are very important in these
bubbles and are incorporated in the model. Because the effects of fluid
rheology are of primary interest, the changes in bubble behavior which
occur between a Newtonian and non-Newtonian environment are discussed in
detail. An integral constitutive expression generates the stress field
in the fluid.

One concludes from the theory that viscosity and elasticity have
negligible influence on growth and collapse of spherical bubbles under
conditions likely to be encountered in practice. However, the behavior of
nonspherical bubbles in an otherwise quiescent fluid is significantly
altered by the addition of an elastic component to the constitutive rela-
tion, and such changes are even larger when an external flow is imposed.

Reproducible cavities were generated by optical cavitation techniques
in both water and dilute aqueous polymer solutions. Spherical or non-
spherical bubbles were produced, either near or far from a solid wall.

Experimental results show good agreement with the theory for non-
spherical bubbles in an infinite quiescent fluid. Other trials, near a
solid wall, suggest the existence of a competition between nonspherical
modes. The jet which is induced by a solid wall near an initially spheri-
cal bubble did not appear when the bubble is initiated asymmetrically.

Finally, we have shown that from a combination of external flow
theory and experimental observations one can predict that changes in rheo-
logical properties can macroscopically alter cavitation behavior by chang-
ing the influence of the flow on the bubble. This is the first work to
put forth a plausible explanation for such an interaction.
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I. INTRODUCTION

Bubble dynamics is comonly regarded as a harmless diversion.

It elicits images of soap bubbles floating on air currents and per-

haps of bubble baths or the gaseous volumes which arise in carbonated

beverages. However, bubbles have a myriad of beneficial practical

applications as well as potentially catastrophic consequences in many

processes involving liquid flow. Of particular relevance here is the

flow cavitation which can occur in pumping or aquatic propulsion de-

vices. Uncontrolled formation of voids under these circumstances can

result in large drops in efficiency and can eventually cause struc-

tural damage to the apparatus. Research activity has been carried out

in this area for most of this century. Great strides have been made

in reducing cavitation damage, e.g. the design and use of super-cavitat-

ing propellers which induce void formation in a controlled and predict-

able manner, but understanding of these phenomena is far from complete.

A new complication was introduced by the relatively recent avail-

ability of synthetic high molecular weight polymer molecules and the

subsequent investigation of their properties. The presence of "drag

reducing" polymers as solutes at very low concentrations ("% 500 ppm

levels) in aqueous liquids dramatically changes the initiation and

subsequent behavior of cavitation in "water" tunnel flows past blunt

bodies. Attempts to extract the essential features which determine

f"cavitation inhibition" to allow some predictive capability for bubble

dynamics and to provide more fundamental knowledge about the behavior

.' -- ., '.- .." . ' . - " . . . a , _ . . . . . , - , __J _ m i _ j
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of polymer solutions in nonviscometric flows have achieved only limited

success. A new model and experimental program is offered here which

includes elements present in actual flow cavitation, but have not re-

ceived much previous attention. For the first time, dilute polymer

solution non-Nevtonian effects cause non-negligible changes in bubble

dynamics which can, in turn, alter the gross behavior of the void.

The features considered explicitly in this study are presented

in Table 1. Surface tension at the gas-liquid interface is retained,

but heat and mass transfer effects are not explicitly included. Al-

though incorporation of the influence of each of these factors is not

original with this work, the analysis of the interaction between them

is unique. The simplest case of interest involves the behavior of a

nonspherical bubble in a fluid of infinite extent upon which no exter-

nal flow is imposed. The results show that the oscillations in shape,

which occur because of the presence of surface tension, are strongly

coupled to the overall volume change of the bubble. A change in shape

due to fluid rheology is predicted which is larger than any alteration

of the overall bubble size due to the same differences in fluid proper-

ties. The addition of an externally imposed flow around the body, which

is the only source of asymmetries in the system, couples with fluid

rbeology to create differences between model bubbles which are much

larger than those changes without flow. The experimental investigation

of the behavior of an initially nonephevioaZ bubble near a solid wall

suggests that the well-established solid wall effect - the induction of

a liquid jet during the collapse of an initially spherical bubble - is

reduced by the initial asymetry.

-- V--4 , m , . m n . . ...... ,. . . . . . ~ .. :
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These results, in conjunction with one another, suggest a moth-

anism by which dilute solution theology may strongly influence flow

cavitation behavior. The shape and subsequent action upon collapse of

a bubble subject to the velocity gradients encountered during flow

cavitation are significantly changed by fluid rheology. This shape is

also important to the interactions between the bubble and the solid

boundaries which are present. Thus, flow and theology can change gross

bubble dynamics. This working hypothesis is consistent with all of the

present work and also with the puzzling lack of data showing rheologi-

cal effects in previous single bubble experiments and theories since

they usually treated the factors individually.

In order to demonstrate the importance of flow, asymmetries, and

rheology in bubble dynamics, the groundwork laid by past researchers

is very useful. From that basis, the present model can be developed

with special consideration of initiation, rheological models and the

methods employed to solve the resulting equations. Then, the means

by which experimental tests were conducted are described. Results are

subsequently presented. Initially, they appear with some comment as

to their individual meaning, then they are discussed from a broader

perspective. The conclusions so drawn are complete in the context of

the present work, but also provoke speculation and suggest future work.

Appendices have been included to clarify theoretical, numerical and

experimental details. As a result, little development of equations is

presented in the primary text.

1M
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II. BACKGROUND

The addition of small quantities of macroolecules to water (e.S.

*500 ppm polyacrylamide) affects relatively large changes in the forma-

tion and subsequent behavior of flow-induced cavitation bubbles. This

phenomenon has been quantified through measurement of the cavitation

inception parameter, o, which represents the conditions at which cavi-

tation initially occurs as

0 Ps -

(1
a i P V2 0)

0

where P is the static flud pressure, P is the vapor pressure, p is
a v

the density and V0 is the free stream velocity. Figure 1 shows typical

"cavitation inhibition" data for water tunnel flow past a blunt body.

The cavitation parameter has been reduced by as much as 70% for poly-

mers such as guar gum (Ellis and Hoyt, 1968, Ellis and Ting, 1974,

Oba, t. aZ., 1978, Hoyt, 1976). Thus, higher velocities or 'mre

severe" conditions are necessary to form voids. Other experiments

show that differences persist even after inception.

In water, the appearance of the cavitation bubbles
is very violent and chaotic, consisting of many
very small bubbles... However, as the polymer is
added, the cavity looks more transparent. and shows
a regular, smooth, wavy pattern at the vapor-liquid
interface. (Ting, 1978)

Gross differences appear in both the nucleation and subsequent behav-

ior of cavitation bubbles. In this work, attention Is focuased on the

latter stage, where continuum descriptions are applied.

4 ----- -" ---- - ------- ---- ----
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Many excellent sources of general Information on bubbles are avail-

able including volumes by Mammit and his co-workers (1980, Knapp, at. al.,

1970). aswell as review articles by Plesset and Prosperetti (1977),

* Acosta and Parkin (1975), Plesset alone (1977), and Prosperetti alone

(1981). All theoretical work is seen to begin with Lord Rayleigh in 1917.

Hie began by assuming a spherical void to be present in an infinite medium

and neglecting all fluid properties except a constant density. A large

amount of the bubble literature since that time has been devoted to the

analysis of more detailed descriptions of fluid behavior, including via-

cosity and surface tension and other physical processes* e.g. heat and

mas transfer, compressibility and the transport of contaminants. A

form of these results is employed in the present work (Equation 111.2)

and like most treatments neglects processes within the bubble. By re-

taiing an assumption of spherical symmetry,only one spatial coordinate.

the radius r in spherical coordinates. has bearing on these analyses,

greatly simplifying the equations of motion.

Results for spherical bubbles are divided into categories. For

pure water, surface tension a and viscosity v are weak functions of

other physical parameters such as temperature. This has allowed suc-

cessful modelling under the assumption of constant values for those two

coefficients. Hovever, the composition and behavior of the pressure in

the interior of the bubble with the evolution of the bubble is not so

simple. Plesset (1977) has delineated two categories of bubble dynamics

vhich he has labelled gas bubbles and vtor bubbles. Gas bubbles are

those cavities for which the medium in the interior Is largely or can-

plately a permanent, noncondensable gas. For vapor bubbles the gaseous
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phase consists almost entirely of the vapor of the surrounding fluid.

Gas bubbles have been extensively investigated, particularly in

the areas of surface oscillations and mass diffusion effects. However,

for the field of cavitation they are not relevant.

The category of vapor bubbles is subdivided into two other topics

based upon the extent to which thermal effects alter the internal pres-

sure, Pit and thus, bubble behavior. The strong pressure dependences

of equilibrium bubble pressure and vapor density act to significantly

reduce pI for a growing bubble as evaporation at the bubble surface

cools the interior. Using an energy balance, and assuming that heat is

supplied by a liquid layer which has thickness comparable to the diffu-

sion length (Dt) , the "thin thermal boundary layer" assumption, this

temperature difference can be estimated as

-' ee

RpC (T)L "-p  (2)

f
ATI 3(Dt)1 PC(2

where L is the latent heat of vaporization, pe (T) is the equilibrium

vapor density at temperature T, D is the thermal diffusivity, c is the

heat capacity and t is the time required to grow to radius R. For

water at 15C, with R - 0.1 ca and t - 10-3 sec, AT - 0.2C, while at

lOOC. AT - 13C. For the former case, in which the thermal effect is

not expected to be Important, the proper term is oavitation bubble. In

the latter, and all cases where thermal effects dominate inertial effects,

the result is boiZing or vapor bubbles.

The cavitation bubble Is more relevant to this work and fortunately,

is the simpler case. For constant pi and neglecting viscous effects

~1 _ _ _ _ _ _
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j2 R 2py - R
j -A ) R 2 + -O

pR[1

2a
7R - ('-R)

where p. - Pi is the vapor pressure. p. is ambient pressure and initial

values are denoted by the subscript zero. For k - 0 and neglecting the

surface tension term, the Rayleigh result for time to complete collapse

is

t [(p - P.)] R0

(4)

- 0.915 Pv - P) R

QuIntitative experimental confirmation of this value was given by

Lauterborn (1972). He was able to generate "empty" cavities by focus-

sing a pulse from a Q-switched ruby laser on a point on the interior of

a liquid mass. Agreement between experiment and equation (4) was ex-

cellent, despite the compressibility of the real liquid. Mote that this

compressibility is expected to become significant in the final stages of

collapse, when the Mach number of the bubble becomes large.

The large magnitude of the thermal effect on boiling bubbles is

Illustrated in Figure 2. Here the theoretically predicted radius vs.

time profiles for the Plesset analysis is shown along with the layleigh

result for water at 03C. Racellent experimental agreesnt with the

K Plesset prediction was found by Dergarebedian (1953). He observed

4- . --
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- -"Figure 2.

Thermal Effects
on Spherical Bubble

Growth
(Dergarabedian, 1953,
Plesset & Zwick,

1954)
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Figure 3.
Thermal Effects on

Collapse
(Zwick & Plesset,
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spontaneous nucleation in superheated water.

Zwick and Plesset (1955) have also analyzed the collapse of a

bubble. The distinction between cavitation and boiling bubbles Is

unimportant here. Despite the heating which occurs with vapor conden-

sation, Figure 3 shows little deviation from the Rayleigh result.

Flynn (1975. 1976) has developed a more complicated model includ-

ing compressibility and notions within the cavity as well as heat con-

duction and viscosity. His results cannot be summarized easily, but

result In predictions of numerous regimes of bubble dynamics which have

yet to be experimentally verified.

The results most relevant to the present study suggest that the

growth and collapse of a spherical cavity in water are usually domi-

nated by inertia and/or surface tension, not by viscosity. The small

amount of viscoelasticity expected for dilute polymer solutions falls

in the same category as viscosity. Both viscosity and viscoelasticity

.4" be 'me more Important for small radial oscillations (Tanasava and Yang,

1970, Zana and Leal, 1975, Yang and Yeh, 1983), but are still minor.

Uxperimental testing of these results has been conducted almost

exclusively on aqueous systems. Spark gap and laser techniques have

been used to concentrate the energy necessary for cavitation inception.

In general, good agreement with theory has been found (see Figure 2).

More detail can be found in the section entitled "Experimental Program".

These analyses have all been carried out under the assumption that

spherical Symetry of the bubble Is maintained. Pleaset (1954) per-

formed a linear stability analysis on the nearly spherical Interface

between two Immiscible, Incompressible, inviscid fluids. B assumed a

- ..- -;? . .-", ~-
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drop shape given by

where YnsIrfacsperia hazrmic of degree n (RacRobert, 1L948;Hobs:n,1955).

and isIniiall smll ompaed o te eqivaentradius R(t). h nl

ssproceeded conventionally in order to determine the conditions for which

at)will grow, suggesting the shape is unstable, and those for which

It will not, Implying stability. The stability condition Which results

can be expressed in torus of the function a n(t)define by

a~t -R 0 3/2(6
at)-(=S) CL (t)(6

I which was shown to be governed by

~R G(t)% -0 (7A)

where

3 2 n(n-l)P2-(n+l) (n+2)P]
2 (AR 2 2 np2 + (n+l)pl

(75)

(upit + (u+2)pajR'

and o Is the surface tension, and p3, and Pa are the fluid densities of

* the interior and exterior fluids.* respectively. fth deais of the

amplitude profile depend on the particular Initiation, but a peneral

statement cam be made
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G(t) < 0 promotes stability

G(t) > 0 allows instability

this means that surface tension always has a stabilizing effect, and

from Equation (6), increasing R or bubble growth is seen to have a

stabilizing effect, while bubble collapse promotes instability.

Plesset and Mitchell (1956) then performed a more involved analy-

sis for a vapor cavity, neglecting the density of the vapor and the

viscosity of the vapor and the liquid. Their results showed that an

expanding vapor cavity is stable, i.e. if 1a(0)/R << 1, then

lan(t)I/R(t) << 1. For a colapsing cavity, distortion amplitudes re-

mained small as long as 1.0 > R/R > 0.2, but as R P 0, an(t) increased

in magnitude as R- . Thus, the spherical shape is unstable for the

later stages of bubble collapse. These trends are valid even when a

small viscous effect is included in the treatment (Prosperetti &

Seminars, 1978). Viscosity does tend to damp the growth in amplitude

of the higher order harmonics.

To determine the linear stability of the bubble shape only the

long time behavior of the distortion is necessary. The bubbles were

assumed to exist in an infinite fluid, quiescent apart from the effects

of the dynamics of the cavity; this is a spherically symetric geometry

giving an equilibrium shape of similar character. Of course, this is

not the only environment in which a bubble may arise. There my be

conditions Imposed on the fluid away from the bubble, such as an

j elongationl flow or a solid boundary, or the bubble may be initial-

ized as nonspherical and a detailed description of its evolution de-

sired. Dubbles have provoked some study in this regard, but sore
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often liquid drops and solid bodies have been examined, giving rise to

general techniques for nonspherical shapes.

With bubbles and any other initially spherical bodies in an im-

posed flow, the primary method of study has been expansion of the

velocity profile in terms of spherical harmonics (Cox, 1969, Shima &

Wakajima, 1977). Use of this technique is usually predicated upon an

assumption of creeping flow, at least In the immediate vicinity of the

bubble. Under this restriction, Happel and Brenner (1965, section 3.2)

offer a practical presentation of the use of spherical harmonics in

Lamb's general solution (Lamb, 1945).

The presence of any interface in the vicinity of a bubble alters

the flow induced by the cavity dynamics from a spherically symetric

velocity field. For a solid wall the collapse process results in a jet

impinging on the wall which may be one of the major causes of the de-

structive action of cavitation. Experimentally the jet has been ob-

served in laser-induced bubbles (Lauterborn & Bolle. 1975) in qualita-

tive agreement with numerical simulations (Plesset & Chapman, 1971).

(See Figure 4.) This type of behavior can be predicted using either

integral methods, employing the Bernoulli equation while neglecting

viscous stresses (Voinov & Voinov, 1975, 1976), or marker-and-cell

simulations (Mitchell & Hammitt, 1973), which can include viscosity.

The viscous effects for water are negligible, dominated by surface

tension and inertia. (See Table 2 for representative values.) The

most important parameter appears to be the distance of the bubble from

the wall.

: , ,

' - i i i ... I .. ...I |
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Figure 4.
Comparison of
Experiment ally
Determined Bubble
Shapes on Collapse
with Theoretical
Curves
(Plesset &

Chapman, 1971)

Figure 5.
Bubble Surface

_________________________Shapes on Collapse:
0 S 02F4411ttS initially

Bwsegme "a m A nonspberl cal
bubble

(Chapman &Plesset)

(OM0Mu

Su~bI sash. h~musa.
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TABLE 2

Order of Magnitude of Terms in Radius Equation

Inertial, Surface Tension and Viscous

R t 3 x 10 - 1 cm

p 1 1gm/cm5

S',10 - 2 8g1 (cm-sec)

a " 60 gm/sec
2

At 10 - 3 sec

> R " R/At % 3 x 102 cm/sec

Inertial: p R2 _. 101

' 2 a

Surface Tension: -- 400

Viscous: ' . 10

-wow-
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When the Interface is not a solid vail, but is deformable like a

free surface, an "entirely new form" (Gibson & Blake, 1981) of collapse

can be observed experimentally. Depending on the physical properties

of the boundary - 'inertial and 'stiffness' - the bubble may migrate

to or from the interface as the bubble collapses or pulsates. A jet

forms and moves in the same direction as the overall migration.

An initial nonsphericity is important even In the absence of an

N imposed flow or solid boundary. The requisite mathematics has been put

forth by Hsieh (1965, 1974), who includes equations for heat and mass

transfer effects, compressibility and also variational methods. Sim-

plified numerical results by other authors (Chapman & Plesset, 1971)

show that an initially prolate spheroid (Figure 5A) may form !wo jets

upon collapse, while an oblate spheroid (Figure 5B) leads to a dumbbell

form. The most relevant feature of these nonlinear results is that the

linear theory of Plesset and Mitchell (1956) agrees well until the final

stages of collapse.

Very little has been offered here so far about non-Newtonian or

viscoelastic effects, either generally or in relation to bubbles. In

the general view it is best to refer to the numerous treatises on the

subject (Bird, Armstrong & Hassager, 1977, Schovalter, 1978). The most

important general consideration is that fluids which exhibit viscoelastic

effects may behave in a manner which runs counter to an observer's

"Newtonian" intuition (Schowalter, 1978). e.g. the Weissenberg rod-

climbing effect. Furthermore, the history or pre-treatment of such a

material can be vitally important to Its performance. In modelling

there are innumerable complications which almost Invariably force a

71-
7',
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compromise between rigorously formulated constitutive equations of fluid

behavior and simpler forms which result in tractable mathematics. The

applicable models and quantitative results are also highly dependent

on the particular flow present, although qualitative trends are usually

similar. These difficulties must be considered in the quasi-linear

model employed in the present work; careful attention is given to pos-

sible nonlinear effects. (See Appendix B)

Dilute solution non-Newtonian effects on bubbles brings attention

back to cavitation inhibition. Spherical bubbles show little effect

(Ting, 1975, 1977, Ting & Ellis, 1974), experimentally or theoretically.

Experiments involving nonspherical bubbles, by Chahine (1981) and others

(Chahine & Fruman, 1977, Gibson & Blake, 1981) with collapsing bubbles

near interfaces, show a "significant" delay in the creation of the

microjet when 250 ppm of polyox are added to the solution and the inter-

* face Is solid. Observations near a free surface also show an effect

from dilute additives. However, these results are not definitive and

the relationship between them and cavitation effects is still a matter

of speculation. Observations by different workers may even appear con-

tradictory. Chahine suggests that the level of nonsphericity in bubbles

is reduced upon addition of polymer solute, while Oba (1978) reports the

opposite effect in his flow experiments.

4

1C
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III. THE EQUATIONS OF MOTION

1. Spherical Dynamics

For the cavitation model developed here the nonspherical shape

will be coupled with the overall growth or collapse of the bubble.

This volume change is treated through an analysis of the equivalent

spherical bubble. Continuity requires that the velocity field in an

] incompressible fluid in this symmetrical situation have the form

[spherical (r,t)] r (t) ()

in spherical coordinates with origin at the bubble center. R(t) and

i(t) are the instantaneous radius and its time derivative, respectively.

*i The fluid is assumed to be quiescent at infinity so the angular velocity

components are identically zero.

The r-component equation of motion integrated from the surface

r - R to infinity then gives

p(U~j + . j 2 _ PL-P + J(!.)rdr (2)

where p, the liquid density, 1, the extra stress tensor, P.. the liquid

pressure at r - R, and Pa, the ambient presauremust now be specified.

By neglecting the viscosity and density of the internal gas the bubble

is assumed to have a uniform internal pressure. This should be accu-

rate as long as the ratio between internal and liquid viscosities is

' ij~i
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small and the internal Mach number

Mainternal ' i/(3 x 104 cm/sec) << 1 (3)

since the speed of sound in air is approximately equal to this denomi-

nator. Surface tension can be included so that Equation (2) can be

expressed as a normal force balance across the surface

pE0I +3 ~ j2j P (t) + P (t) - PaCt)

(4)
20 r- +3 --- dr

R

where P is the internal pressure of non-condensable gas, Pv is the

vapor pressure of the liquid at the surface temperature and a is sur-

J -face tension. This form of the equation is sufficiently general to be

capable of including:

A) The nature of the non-condensable gas

e.g. Pg (t) - P (R) - R(-) 3  (5A)

for a polytropic gas

B) Thermal effects

Pv(t) - Pv(T), a(t) - a(T)

and P (t) - i (T)

C) Different constitutive stress expressions

e.g. rr - f(11 , 12. I) for (50
strain invarianuts I

The simplest, useful, non-sero, stress expression is that for a purely

I,.
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Newtonian fluid with constant viscosity p. For this velocity field

the radial deformation rate is

er(rt) 2R2 (t) i(t) (6)

rr V3

so that

- drm - u (7)3 lRt)

R

Non-Newtonian expressions may be complicated by higher time deriv-

atives or integration over past times combined with material objectivity

constraints. When the time integration is performed in a Lagrangian

frame, following each fluid element, objectivity is satisfied for this

simple, symmetrical flow situation. The Lagrangian coordinates can

easily be related to the Eulerian, laboratory-fixed, coordinates by

!3
(r')s - r + R(t') - R'(t) (8)

where r' denotes the position, at the past time t', of a particle which,

at present time t, resides at radius r. Time integration must be per-

formed at constant r'.

A mathematically simple model which incLudes stress accumulation

with fading memory was employed by Fogler and Goddard (1970. 1971), who

specified a relaxation modulus (memory function) N(t) such that

I

A . . .. . . .. .. .. . . .
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iI  t

T rr(t) " J N(t-t')err(t')dt'
"m (9)

N(t)- 6(t) +0 exp (-t/)

when 6(t) is the Dirac delta function. The elastic contribution is

characterized by two parameters: X. a relaxation time, and G an

elastic modulus. In the limit of zero elasticity a Newtonian fluid

with viscosity v is described. In the Lagrangian frame, the stress

term becomes

4 --f drR r (10)
Rt

ft i(t' )R2 ()1n(Pt) )dr1

- -4 ] (t-t')
R'(t') - R(t)

A similar result obtains for an Oldroyd three-constant model.

Ting (1977) shows that the equivalent elastic modulus is expected to

be directly proportional to polymer concentration. To generate a rad-

ius profile initial conditions need to be specified. Ting chose to

impose equilibrium before time t - 0, then postulated a step change in

ambient pressure of magnitude P* at time t - 0 to initiate motion. By

his convention, when P < 0 the bubble grows. The numerical solution

predicts changes in R(t) values of less than 22 between pure water and

a slightly viscoelastic madium.

Fogler and Goddard present large elastic effects, i.e. changes

in the R(t) profiles, but for parameter values which minimize surface

1' .1
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tension and correspond to G such beyond the small values expected by

Ting. Since the present work was motivated by dilute solution phe-

nomena, values closer to Ting's were investigated. This meant little

alteration of the steady shear viscosity was allowed. One manner by

which to impose this requirement was to restrict the relative values

of G and A by

l 0

where (11)

P , 0 (10 - ' Pa-9)

which gives an elastic contribution to the steady shear stress equal to

the viscous component. In calculations the initial physical parameter

values were chosen to correspond to superheated water at 1030C, since

experimental data on spherical bubble dynamics were available

(Dergarabedian, 1953).

TABLE 3

Parameter Values for Initial Calculations

- 845 meg

P 0 760 e NHg

a - 58.9 dyne cm

= - 0.961 a/cm
s

-105 dyne/cm2 < P 10' dyne/cm2

10"5 see V A < 1.0 see

SAd.> ". .................................................
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For all P* and A values the radius profiles changed by about 1% or less

between a purely viscous and viscoelastic fluid subject to condition (11).

As the magnitude of P increased, inertia became more Important since

velocities and accelerations became larger. For more detailed results,

see Section VI.

2. Viscous Nonsphericities

The relaxation of the assumption of spherical symetry greatly

complicates the analysis, even for the purely viscous case, since e and

components and dependencies now exist. A general analysis might begin

with the full equations of motion in spherical coordinates. However,

the Navier-Stokes equations include nonlinearities from the convected

inertial terms. These introduce computational difficulties which

are compounded for viscoelastic fluids by nonlinear co-deformational or

.j co-rotational constitutive models.

Prosperetti (1977, 1980) neglected the non-linearities in the

purely viscous case by imposing the condition that all departures from

spherical symaetry be small. The shape of the bubble surface J(r,0 #,t)

can then be expanded in spherical harmonics.

(r,e,,t) : (12)

r - R(r)- e (e) - 0
n

for some small parameter c which must be determined to allow the desired

mathematical, and physical, simplifications. Zere, a (t) is the

. .. ..... . ........ ...
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magnitude of the spherical harmonic ?(8,*). The spherical harmonicf

determine a particular angular dependence and are defined as the solu-

tions to

[n(n+l) + I ~ sine - + sIn'eF-O 3 .ln-sin Be Be9

or, equivalently
' (,4) - -I P1-I~ (os6 ) (13)

for the Legendre polynomials PI
M (x).

Of course, the full velocity field V(r,e,*,t) must satisfy:

DY- 1 V + eiv. o (14)

WE at P z

where the stress tensor a for a Newtonian fluid in Cartesian 
coordinates

is

Ojj "P 6J )j x i

The surface shape 1, above, is consistent with a perturbation 
expansion

of V and the pressure field P as

y(re,#,t) - !o + e v + 0( 2) (16)

P(r,$,*,t) - Po + C pp + t O +(c) (17)

when V and p obtain for the unperturbed spherically symetric case

N.W
* r.,w'.... '
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previously presented.

Po  Pa(t) + p[(R2 Y' + 2 1AR) r " - -  (18)

The first order asyznetries can be divided into two parts; the

first arises in an inviscid potential analysis. Plesset (1954) shows

v -Vp .p (19)

where $P I*R n+2 [;(t) + 2a(t) fi(t) 31P ,

and

pp 1 - (R(t)i(t) + 3i(t);(t) + 2!(t)a(t)jT'(e,) (20)

r-R

The second type of O(c) term is necessitated by the introduction

of viscous dissipation and/or elastic energy storage. Since potential

functions such as the inviscid velocity profile have zero curl, this

second velocity can be treated through the vorticity L

C W 7XY- C xv v  (21)

which is governed by the usual vorticity equation for the purely viscous

case. At first order In c

-t +  (e a vo ) a -v V x(y x t) (22)

for kinematic viscosity v.

J 1



27

The usefulness of this analysis in terms of vorticity is not only

the elimination of the need to explicitly determine the pressure field,

but also a decomposition of W is possible since it is solenoidal

(V W - 0). The vorticity can be expressed as the sum of two other

vector fields, one poloidal and the other toroidal, which can, by defi-

nition, be expressed through two series of s8aZar functions.

+ (23)

S(r,4,t) = VxVxS (r.t)yn(e.)g (24)

n m

T(ro,*,t) - y Vx[(rt) y(e,$)e] (25)
n m

Since these two vector fields are orthogonal, the linearized

equation can now be written as two series of independent scalar equations.

For each index n:

as + ,R as m ,2S s+t (r T -- - n(n+R)(r )3(26)

BT 2  T2T T+ - R( ) T , - n(n+1) r2] (27)

The properties of poloidal and toroidal fields (Chandrasekhar,

App. III) can next be employed to show that:

4'

.4
.. -"-



u T(rst)Y~ + x[S~ (r, t)Y.]-V~ (28)
n's

Continuity considerations require the presence of the final term which

must satisfy

V2 § -7 V • e (29A)

V1

Integrating this equation

n " n {[a(t) + j S-nTn(s t )ds]?n

nItn 1 (293)

+ [7 (t) + nT (S,t)dSrB

n n 2n+1 xx
R

Ir

where the"COnStant" of integration a (t) is determined by the ambientn

flow conditions. When the flow decays at infinity,

t n+l S- (S,t)dS .(30)

R

These defining equations for S and T and their relationship to

the perturbation velocity v allows an a posteriori evaluation of c.
-v

The simplification of these equations is only valid when the nonlinear

terms, corresponding to convective terms in the substantial time

4 derivative, which are 0(t2), are much smaller than the 0(c) terms.

These restrictions are considered in Appendix B.
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Boundary conditions on S and I are now required to specify the

solution (Cox. 1969, Scriven. 1960). For an inviacid and massless

internal gas the velocity profile must satisfy the zero tangential

stress condition and the balance of normal stresses at the interface.

The fakrmer condition becomes:

{r(~ [vS(rt)] )rR - 0 (31)

2(2n+1 )e- [-_aei(t) ] + KRUu(~)

2(n+2) - (n-O)ia j2 (32)

where the amplitude a(t) and its first derivative entcr the equation

through considerations of surface curvature. The viscous contribution

to pressure in the external fluid at r -R is

p npy ~ R) R)s1()&)T(St)dS} (33)

and it can be used to express the normal stress boundary condition at

R.R

++2(n-M)n+2)v j2 + (tn-1)(n+2) !l.awt
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+n (n+2) v T(. t) - R( )J1 - R 3 1 ]() T(S~t)dS (4

R

Since the bubble shape determined by the an(t) is of primary interest

this last equation may be viewed as the principal expression of interest.

It is an equation of motion for bubble shape, while the other two are

boundary and consistency conditions.

Prosperetti solved only for the case of constant bubble radius.

Since the coefficients of a(t) and its derivatives are then constants

and only the inhomogeneous, forcing function is time-dependent, solution

of the system is considerably simplified. Laplace transform techniques

can be applied to determine the asymptotic behavior of an(t) analyti-

cally. However, to generate a complete an(t) profile numerical tech-

niques are necessary to invert the solution in the Laplace domain. Of

course, initial conditions such as the initial amplitude a (0) and non-n
spherical velocity n (0) are also necessary.

Results for this particular case, where there is no motion pre-
.4

vious to time t - 0, show nonspherical amplitudes undergoing damped

oscillations. initially, the frequency is determined by surface ten-

sion and damping factor by viscosity, but no such simple statements

can be made about the behavior at long times.

These Laplace techniques are not applicable when the equivalent

radius R is not constant, but the results for this case will probably

be more interesting in view of the stability analyses su marised in

Section II and
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"Indeed, it is expected that in a flow with so
strongly converging (or diverging) streamlines
as the spherical one the accompanying concentra-
tion (or dilatation) of vorticity would play an
Important role in the process of energy dissipa-
tion and hence in the equation of notion for a(t)".
(Prosperetti, 1977, pp. 345,346)

Prosperetti (1980) has also approximated the solution of some

cases of variable R by making a series of approximations. He concludes

that small viscosity will not substantially inhibit the instability of

the spherical shape for moderate n. However, it may change the mode

of breakup if the bubble collapses into many fragments.

Before proceeding, the neglect of the poloidal field 6 should be

justified. All equations governing this function (Equations 26 & 31)

are homogeneous, so it is never present unless initiation requires its

existence. Physically, a zero poloidal field corresponds to an absence

of circulation or bulk rotation (Batchelor, 1970 p. 93) in the fluid.

Mathematically, poloidal fields are necessary when the velocity con-

tains components with angular dependences given by

V x [72 (,4) Or]

3. Viscoelastic Nonsphericities

Extension of this perturbation technique to include viscoelas-

ticity is straightforward in principle, however the level of complexity

of the resulting equations Is much higher and there are additional

ramifications of the linearization. An Integral model (Iquations 9 & 11)

of fluid behavior has been chosen in part because explicit expressions

S...r
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for t*.e stresses are then available. This introduces an integro-

differential form to the system. Material objectivity requirements,

e.g. co-deformational or co-rotational integrations. will, in general,

introduce nonlinearities which must be evaluated (See Appendix 3.2).

The extra stress expressions in the purely viscous. Newtonian,

case have the relatively simple form of the terms in equations (27),

(32) and (34) which include a viscosity constant p or v. Any further

complications are removed by the instantaneous nature of the process

of viscous dissipation and its characterization here by a single, time-

and position-independent physical constant. Any spatial variation in

the viscosity would disallow the amplifications which result from the

manipulation

MV + (V)T- 2pV 2 V (35)

and others like it. To include viscoelasticity. all these extra stress

terms must be altered with careful consideration of the order of opera-

tion and reference frame or coordinate system in which they are performed.

The fundamental difference when viscoelastic stresses are calcu-

lated is the need to operate not merely on the instantaneous strain

rate, but also on its appropriate time derivative in a differential

model or on the pertinent past values for an Integral equation. Follow-

ing Fogler and Goddard,a Maxwell-type integral model is employed here

since it is tenable with superposition of simple viscous and fading

elastic effects and Is the small-deformation limit of many other, more

general expressions. Beginning with velocity field (28) and boundary

NOWOU 1im - - , ++'++tJ.. Ijj + .. . .. + +. . + 1"5 
+

:++
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conditions (32) and (34), terms of the form

v j (R;r.t) (36)

and replaced in the linear theory by

t

J t(t-t') y (R';r',t')dt' (37)

This is not a simple RBlerian integral over past times. Rigorous mater-

ial objectivity constraints would require a Lagrangian frame with co-

rotational or co-deformational contributions to take convective and

orientational changes in inter-fluid element spatial configurations

into account.

Radial convection is incorporated to O(c°) just as it was in the

spherical case. A new radial position coordinate B is defined here

which is equivalent to the Langrangian coordinate (8) for symmetric

dynamics. The variable transformations are defined by

rs - R3 (38)

-t

so that

i4H,-) - T(r.t) (39)

Since the T-equation results directly from the oosntum or vor-

* ticity equations the right hand side (RS) of this equation must be

;--- .. . ..
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derived from

(Vx)V* J -(40)

for the strain rate tensor y.The new T equation becomes:

aT 2R 2i T . L22T+L 2_ (n+1) T

+ c{ 04J1exp ( c2I (HT')dT'

+ 2L2 JTW 2T HTldi

+ LS exp(L!) 3 HC)t 1 (41)

.7 where

-2n(n-1)(n-2)X n(H.T)Ln2

-2(n+)(n+2)(n+3)Z 
O1.)L~n+3

+ n(n+1) T R.r

12--2(n 
2 +n+4) -jn -

- (2n-)(u-l)(a2 5)

+ n2(+)27),(,C

.......
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1 3 2 2(U +0+8) T L7~r

+2(n-M)n-2)(n-5)X nE.)L (n-8)

-2&i+2)(fl+3)(n+6)Zn-T1-(+

1 aT 9H

L (H) -(3H + R) 1l/3

and

L
n r

X n(H,) an T) A () +yg- IS- n (Hr) dS

R

Z (H.T) m~~R 2  (a (-r) - At (T)J

L
V+1r +

+ y el T (H,r)dS

R

and the function AWr is zero for an externally quiescent fluid and

4is introduced in the far-field conditions (Section IV). SOe Appendix

A for a derivation of this expression.

There are also nev complications in the formulation of the boundary

conditions at the bubble surface. A distinction emerges between term

which ariae from the stress expression and those In the unit normal

-. 171
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vector. In the viscoelstic case, term obtain such as

a(r') ()JT R () d-r' (42)

and

____r) 
(43)

which are equal in the viscous limit, but must be distinguished in this

application. The normal stress boundary condition is altered both in

this regard and by changes in the T-equation. The O(c) v-pressure is

calculated by the spatial integration of the equation of motion (see

Appendix A)

"v (HO~r)(44)

R ' N(r-T')

.1 T + -2[(n-1)(n-2) + n2(+)#,]

R (n-5) (a-A) ldT'

T

2[(n-1)(n-2) + (n+2)(n+3)(&1 )]R n2 (*-.A)) d-0

+2(2u+1) inl (nA
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+ iT(HO0,T)

4 ~'iS~ (t-I)dS
R

The new normal stress boundary condition becomes (lee Appendix 
A)

2.- 3 i 2(n-1)(n+2) N' dT
n+l r I

n-1m

+ 4 - (n-1) (n+2) JN' a' d-r

+ 6n(n+i) li JN()d r'

12 aR2 JT + (n-i)(n+2) 12 a

+ n(n+l) J, N'(jdr + p (ROO.rt) a 0 (45)

.44 where a Is the surface tension constant and II' * 3(-r') Ulich Is

viewed s an equation of motion for a(t). This wust be solved
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* consistent with the T-equation and the tangential stress boundary con-

dition. (See Appendix A.)

jt {2(n+2) (+ 2aR

- (n~l) 1 + 2(2n41)R (n 2 ) (*-A)} dr'

- 6(n+)i N' jd' -0 (46)

It is useful to note that these equations do reduce to their viscous

counterparts when the elastic contribution Is zero. In particular, the

spatial Integrals of the T field are seen to cancel Identically In the

instantaneous dissipation limit. (See Appendix A.3.)

Viscoelastic calculations for the considerably simpler special

case when R - Ro have been performed by Inge and Dark (1981) using

Laplace transform techniques while including a linearized 3-constant

Oldroyd model. Their results supply a useful check on techniques which

allow time-dependent R(t) values.

The system of equations governing the symetric dynamics de-

veloped here is linear In all of the 0(t) quantities, Ise. %(T o

(HMT), A3 (T) and their Integrals and derivatives. Whs linearity

emrges from the assumption that term which are second order In to

representing convected moetus fluxes ad also convected and co-

rotational sand/or co-defomuational contriubtions to the nou-Newtonian



39

stress, are small enough to be neglected. However, the constitutive

model employed does not neglect all nonlinear contributions to the

stress, the Lagrangian coordinate transformation incorporates convec-

tion by terms of zero order in e. Thus, this is not merely a linear

viscoelastic model. Furthermore, at this first order in e, the

integral model of Equation (111.9) is equivalent to many others in

integral form including the linear Jeffreys model (Bird. Armstrong &

Hassager, p. 279). the co-rotational Jeffreys model (p. 328) and the

Oldroyd 8-constant model (p. 371).

The neglect of terms of second order in c, restricts the condi-

tions for which the equations are valid to motions exhibiting small
60

deformations from the purely radial, O(W° ) motion. The prescription

for "small" values, which determines e, can also be viewed in terms of

the harmonic expansion which is the basis for the separation of angular

and radius-temporal dependences in equation (25). By treating each set

of equations (41), (44), (45) and (46) for each value of the index n,

independent of other n values, the linear independence of the modes

(spherical harmonic angular dependences) is invoked. This implicitly

means than any asymetric field, nonsphericity, velocity, pressure or

stress with specific angular dependence 1n(6,0) will "excite" and be

"excited" by only quantities with that same angular dependence. In

reality this can be violated by inertial terms or by convected elastic

contributions from angular or radial strains and the resulting stresses.

In the viscoelastic stress term the possible contributions can be

evaluated mathematically and this is done in Appendix 5.2,

i 1: . : ... . ! :.. . "' "" .. ;.
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IV. INITIATION AND FAR-FIELD CONDITIONS

In order to solve for an and thus, the shape of the cavity, the

viscous equations (111.27). (111.32) and (111.34) or the viscoelastic

system (111.41), (111.44), (111.45) and I1.46) must be solved simul-

taneously subject to an e(o) R(t) profile such as one generated

through equation (II1.4). Specification can also be made of ambient

flow conditions in conjunction with (111.29) and (111.30). The New-

tonian system is mathematically simpler than the equations containing

the Maxwell-type model and complete problem specification can be

achieved by two physical parameters u/p and o/p and two shape values

per mode, a n(0) and 1 (0) at e(E). For a bubble in a fluid with non n

externally imposed flow the system is well-posed.

Viscoelastic fluids add a non-instantaneous component, caused by

fluid memory and represented here by time integrals, which give elastic

stress accumulation. Behavior prior to some initial time, e.g. t -

- 0, is relevant to the determination of subsequent dynamics. It is

no longer sufficient to specify an(0) and n (0) only; the memory inte-

grals must also be initialized.

Time zero is chosen to be that instant at which 6(t°) spherical

dynamics are initiated i.e.

tt) -0 1t

R(t) R6
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so from equation (111.3)

Po Po - Po
2o (2)

This also initiates the value of the elastic contribution up to time

zero as zero at O0 ). For this vapor cavity (PO - P (t) - 0). notion
g g

is begun by a step change in ambient pressure

Pa(t) pO - p* H(t) (3)a a()

vhere H(t) is the Heaviside step function. The sign of P* determines

the type of spherical dynamics

P* 0 0 Collapse

P- 0 0 Static (4)

P* > 0 1>0 Growth

For a particular value of P*, and the physical paameters of Table 3

(in Section II), 1(t) vs. t profiles can be generated from equations

(111.3) and (111.9) with (1111.) and one final condition

i(o) 0 (5)

The initial conditions on the nonspherical term w ich are snalo-

Sons to those on the symetric values given in equation (1) are

P _ _ _ _ _ _ _ I M" .. .

i I-' - : q - ., .... . ..
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' -- T(r,t) =0
t t < 0 (6)

;(t) - ;(t) - 0

The resulting equation and boundary conditions cannot be satisfied for

arbitrary a(t) - a since the surface tension term acts as an inhowo-0

geneity for non-zero a and finite R, and it cannot be balanced by a

toroidal field satisfying all three constraints. Thus, to conform to

(6) the degenerate case is required

T(r,t) -0

S t < 0 (7)
a(r,t) - 0

However, without some additional disturbance only the trivial

case of zero nonsphericities is invoked. The necessary inhomogeneity

may be introduced by simply specifying a(0) and an (0). Physically,

this seems troublesome since a discontinuity in shape and/or nonspherical

velocity is necessary. In the viscous case this objection is not rele-

vant since both mathematically and physically the manner by which these

initial values arise doe not influence subsequent behavior. Thus, even

if a discontinuity in a (t) at to is specified which requires a physi-

cally unreasonable singularity in the acceleration a n(to), the problem

is veil-posed after to. These same arguments cannot be forwarded for

a viscoelastic medium, although conditions (6) do allow values to be

assigned to the elastic integrals. For the viscoeleatic fluid the

manner by which the condition at time t -0 aris is relevant to

Wi
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subsequent (t > 0) behavior.

Results of simulations which incorporate the pre-zero static

conditions (7) show only a small difference between a viscous fluid

and one exhibiting viscoelasticity modelled by equation (111.9)

with X > 10- 5 seconds. (See Results, Section VI.) This is consist-

ent with the expectation that viscoelasticity, modelled in this man-

ner, will be cumulative and the observation that in the present case

the duration of the nonspherical bubble dynamics is insufficient to

alloy stress accumulation.

The difference between viscous and viscoelastic responses in

this analysis results from a difference in stresses symbolized by

A(stresses) -

- viscoelastic stresses - viscous stresses (8)

f( ) r e-(T' , 1 )I e lT') de" (H,)
- f(R,H) -fR,H

where

e - strain rate in viscoelastic medium

•v - strain rate in viscous fluid

Thus, the difference in stresses can be viewed as resulting from three

highly inter-related and interdependent components: the difference

between the corresponding instantaneous strain rates es and e%, a con-

tribution caused by the 0(e0 ) convection represented by f(R,H) which

might be called "geometric" and finally, the existence of a fundamental

constitutive distinction between the 'emory functions" N(r) and v 6(T).

- . . , ii
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Initially neglecting the first two contributions so that

e r ev em x

and I ee(H' ,r'

f(R.H) tN('r-'r') e~',' tiT'

|~ N 4DT' • (R',H')

II

a first estimate of the overall stress difference can be derived

T

A(stress) J()exp( tj-)e(' )dc'

< ea [l-exp(j)) (10)

a (T) v ea for small (r/A)

In evaluating the integral no contribution for all time previous to

- 0 is allowed since the set of initial conditions, Equations (6) &

(7), specify no stress field for that period of time, which means

V 7-

(to- W ))TIj)ei)d'(1

0

.4k-
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This approximtion t~o useful for preliminary attempts to evaluate

parameter sensitivity. One circumstance in which this result would be

inaccurate is that of a large temporal variation in the geometric fac-

tor f(RE), rendering equation (9) invalid. Dowever, while the result-

In stress difference may be large, the variation in f(R,B) obtains for

large changes In () which also corresponds to an increase in inertial

effects likely to decrease the net affect of stress on the amplitudes

a(). mother situation which must be Investigated since it would

Increase viacoelastic effects is any set of conditions which would make

Equation (11) inaccurate. The time period before t - 0 represents the

history of the fluid which can be important for fluids with memory, and

a self-consistent scheme to describe this domain should be found.

A first attempt to Initiate the stress integral night be to spec-

ify a non-zero constant amplitude so in addition to the conditions

stated in (6). However, a static Inhomogeneous solution to the system

does not exist. Apparently the transient problem must be treated to

* introduce nonsphericities and an asymnetric stress field prior to the

Initiation of spherical dynamics. The analysis will aom divide the

problem solution Into two time Intervals. One of these intervals, the

second, corresponds to the full problem; after time t a t - 0, the system

Is solved for a(r), while the spherical radius, R(r), Is allowed to vary

in time. Defore time seTO, In the first timUe some, 1(t) - Io , a constant,

and a transient scheme to introduce end describe asymmetries in the system

must be devised. Th proposed tbeOrettal scbe should be mathematically

tractable and also allow a reasouble physical imterpetatioe. If poasi-

ble, this physical significae should be directly translatable to exper-

Suntally achievable asUdtion.

.t-!

.. . - " . ..* " - . . . , / . . ] I l II I l - *. .: ,,--y . .. ,,. - +' , _, - - ., .. . )* _

• ..... . ~ '., -,,- . • -. , l
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Since R(t)-i and 1(t) oj )-for alltie t T -0othe

complications introduced by a Lagrangian framework are not present and

their (r.t) coordinate system can be chosen. The toroidal field equation

then becomes
t

rt

If a separable solution is assumed to exist

Tn(r't) me R 'IXa t) Pj(r)) (13)

where e U (t) are functions only of time,.n~ only of r and X9jare

constants, then

dde

and K- j (t-t') e j(t')dt' (15)
U. j dt ~

where R s is a particular constant of separation. A steady state con-

* tribution to the solution Is

0 0(t) 1

55 + 55 (16)

since this part of the velocity field Is bounded asr v 0. From

equation (111.30)

88 Xr 
(17

(29+1)%
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The temporal equation has solutions of the form

1
e (t) - exp, [ t~ ±W i)t] (18)

which means that the separation constant is complex

v + (A.)/[- + L + w
P - J (19)

.1 + iwi

for the relaxation function N(t). By requiring the solution to be

bounded as t -- ,the decay time C is restricted to nonnegative values.

The spatial equation (14) can be transformed into a version of

Bessel's equation. For n - 2, the two independent modified spherical

Bessel functions relevant to the solution are

F~) 3 3 1 x

3 3 1 -x (0
F2 (x) -

for the transformations

X r

p(r) *r F(r)

F IN) Is not bounded as r -o- so only 1 2(x) contributes to the solu-

tion. The spatial integral u2 (t) consist of tes of the Lotm
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a,J - ei (t) X2 ,j (-

(21)

i-- e (-) s.. 3v dSro
Rj

or

ct2(t) x X W- ~. ~ (D' + Djexp -1 (22)(i-
when Dj -Avj /R0

The time dependent portion of this toroidal function is an exponen-

tially growing oscillation of frequency wi which occurs between t - -

and t - 0. The time constant and frequency of e (t) can be specified

independent of any variables or parameters of the physical system as cur-

rently described. This will fix the separation constant Ki which, in turn,

determines the spatial function o (r). When an individual transient mode

is excited, it is the form of the t~me dependence of all the dynamics.

Thus, if a physical mechanism or apparatus could be visualized to drive

some event with form e (t), all asymetries would be similarly driven. In

0(40 ) dynamics, initiation was accomplished by changing the far-field con-

ditions through the ambient pressure. An initiation of 0(c 1 ) dynamics

through far-field conditions would be Ideal.

The oscillatory time-dependence is reminiscent of rheological

testing which employs oscillatory motions. In this analysis, far field

flow conditions are governed by %(t) in #u(roO,*,t) (see equations 111.29

and 111.30). The value of % (t) In equation (111.30) results when the

iU
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velocity field vl is required to decay as r increases. A way to alter

*. that requirement is to add a time dependent term to the old a (t) expres-
Sion

C 
f l o (t) a (t) A et) a (t) - (t) (23)nn J J

which is formed with the "appropriate" time dependence e (t). The

velocity field as r -o- is

yi - V [A 0 (t)r" 1 (e,4)] (24)

For the particular case n - 2

(vI) : 2A3 j 1(t)r 42

-vI A E)(t)r B2(25)

-~A 3 9(t)- rm 3$-Mj oe a4

When u - 0, this respresents a three-dimensional elongational flow with

extension along the Z- or e 0 - axis, and time-dependent elongation rate

A3 e1 (t) (see Figure 6a). The a 1 and a - 2 cases, with n - 2. are

two-dimensional elongational flows with rates A 0 (t)16 In the y-s and
i J

x-y planes, respectively. (See Figures 6b and 6c.) These latter two

flows are particularly convenient since they can very nearly be achieved

experimentally In the Taylor four-roller apparatus.

C,-'.
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I

The shapes of the bubbles created by these flows are given by

(111.12). i.e. the deviation from the sphere Is given by 1?, (0.4) with

amplitude a (t). Representative shapes are shown in Figures 7(a) and

7(b), 8 and 9. Figure 10 shows the streamlines of the actual external

flow around a spherical body.

The new far field condition mut be applied to the boundary condi-

tions. All * (t) must be replaced by aflow(t). The flow term will alson
appear in the pressure term Pv(rt), Equation (111.44) since it arises

from the equation of motion which employs the velocity, not vorticity

and the velocity field includes the influence of the flow. The tangen-

tial stress condition for time t < 0 requires the value of toroidal

function to be

T(R.,t) - Xj eO(t)RDj (3D 2+ 3Dj + I)exp(- (26)
. j

and with a new intermediate function (t)

(t) e (t)[l0 Aj + 3 x exp(- I)DOD1 + +1). (27)

that

a(t) " a d + ! j (28)

Aain the constant displacement a, must be zero an in 3quation (7). The

normal stress balance then completely determines the solution for all

tiass t c O. The final result is expres ed through a ascade of ae

ll .- ,ill
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Fiur 7. Shpe Crae yEtralw



Figure 8. Representative Bubble Shape
and Excternal Flow for Y2(e,*)

Stream surfaces are shown along with
bubble shape.
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I a. 1.0b. 0.5

C. 0.0

d. -0.5 .0

Figure 9. Shapes for r R + ca2Y 2,*

Labels give values of ca,

R

*1iijlgl
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complex variableb

1'
- ,for fluid relaxation timeX

1
i y -. ~ iu- j

G /p

R +F 4c°
YC (O)Y - )YB (29)

Rol

BT " (S + y ) -G op+ (8+y )

YS YD[3 BT+  0

with the final result

40R y A
X C 110 + (-"--) 7 (30)

Evaluation of the velocity and stress fields, as veil as the bubble

shape is now possible.

Notice that is complex and varies linearly with the complex

strain rate AS. Large stresses and nonsphericities can be generated by

specifying a large (A4(. but are subject to restraints on the validity

of the viscoelastic model, as discussed earlier, and by eperimental

practicability.

-- o............,......,....
- l:'' l 1 : , ' ' i : ' " 7
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The behavior of the external flow after spherical dynamics are

initiated at time t - 0 is a new consideration. If C iis not large

compared to the positive time period of interest, then the elonga-

tional rate will grow to large values. Therefore, at time t - 0, a

new damping factor might be assigned to the flow and since the full

equations will be solved numerically, without the separation of varia-

bles in equation (13), this is mathematically allowable.

The introduction of the external flow terms allows the problem

to be physically and mathematically well-posed at time t - - 0. All

quantities now have physically meaningful, unambiguous values. Look-

ing toward the expected behavior for subsequent times (t > 0), the

same intuitive arguments presented as expressions (8), (9) and (10)

suggest the kind of parameter sensitivity to be expected; any combina-

tion of parameters which correspond to small instantaneous strain

rates, but allow accumulation over long times, e.g small w and C >> A,

would show the largest elastic changes.

(
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V. EXPERIMENTAL PROGRAM

1. Introduction

In conjunction with the theoretical analysis of nonspherical

bubbles in viscous and viscoelastic fluids, an experimental program

was begun to test the model and attempt to isolate the most Important

factors in real cavitation inhibition. The use of dilute polymer

solutions was natural in view of the initial motivation for this york,

yet added complications due to the lack of rheological measurements

available on such fluids. Results confirm the prediction that inertia

would dominate spherical bubble dynamics and also demonstrated the

viability of our technique in creating nonspherical cavities.

The criteria for the experimental system were very straight-

forward; it must have the capability to

I) create spherical bubbles which remain spherical

2) create nonspherical bubbles reproducibly

3) allow introduction of various flows

4) record these bubble sizes and shapes.

Of course all of this must be possible in various fluids with some

flexibility with regard to bubble size.

Previous workers had used numerous techniques to study single

bubble dynamics. The simplest is probably the introduction of a

cavity by inflation using a device such as a syringe, then withdraw-

ing the Instrument and utilizing surface tension to seal the bubble.

A variation on the same method depends upon buoyancy to pull the S

7 4-
,7:
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volume off the "inflating needle".

The technique has been employed with success by Pearson and

Middleman (1974, 1977, 1978) to generate elongational flows as a tool

in fluid characterization. However, their elongation rates of order

1 second- are much smaller than those relevant to cavitation bubble

collapse, where the time scales are much smaller and dissipative

mechanisms much less important to spherically symmetric motion. As

a consequence of the Reynolds number regime into which Pearson and

Middleman's work can be classified, useful results can be extracted

without regard for any nonspherica-l shape using only a pressure parmam-

eter. Thus, the presence of a physical apparatus, which introduces

asymmetries into the bubble environment was not an impediment to that

work, but would be when small nonsphericities are important.

One way to remove the apparatus from the immediate vicinity of

the bubble has been to allow the cavity to move away from any bubble

forming device through buoyancy driven motion. Hassager (1977, 1979).

'4Coutenceau and HajJam (1981) and others have studied both viscous and

viscoelastic effects in this manner. However their bubbles are usually

large, have constant volume, and the first order effects are not inertial.

Once again, nonsphericities arise, but it is the steady shape of the

bubble which is of primary interest.

Experimental events with dynamics more closely resembling cavi-

tation bubbles can be generated by the rapid discharge of electrical

potentials of the kilovolt range across electrodes in the working

fluid. Gibson and Blake as well as Chahine and his co-%orkers have

had considerable success wIth this technique in studying the inter-

-.I.... .- . ..
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action of the bubble with various controlled asyumetrical enviroments

such as solid walls or free surfaces. Their configurations confer a
.4

planar symetry on their experiments which appears to be unimportant

for the study of the highly deformed shapes which arise due to the

presence of a planar boundary. None of these experiments Includes the

velocity fields which are present in flow cavitation. The flow pat-

terns might well be altered by the presence of velocities in the regions

of high shear where cavities should be formed, if these devices were

used with flow.

2. Apparatus

A technique which requires no apparatus in the fluid in the

region where bubble forms, has been pioneered by Lauterborn (1981) and

his co-workers. A laser can be used to focus electromagnetic energy

sufficiently to generate cavities. The non-invasive character of this

method makes it the most promising and flexible to study the variety

of conditions necessary for the testing of the model system analysis.

The apparatus used for the present experiments is represented

schematically in Figure 11 and with a photo. Figure 12. The major

component, a ruby/glass laser, generates maximum output of 1.5 J in

15-30 nsec. The effective width of this bea= as detected by spot

burning tests was about I ca, which sized the focussing lens system.

The final design for the cavitation chamber without flow was a

parallelepiped constructed from PIDA with a useful interior which

approximates a cube 11.5 cm per side. The wall through whidch the

7--7.-" -tot
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APPARATUS

1.5 JTANK,
Ruby LENS

DIGITAL
DELAY

Figure 11. major Components of Optical
Cavitation Apparatus

.[. .<
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Figure 12.
Arrangement of Apparatus Shoving:
(A) Control unit, (5) digital time 40l4Y#
(C) ruby laser, (D) flash laup and diffuser,
(E) test cell, and (P) Rasseiblad camera

4.W
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'i laser bean enters the tank contained a plano-aspheric lens, mounted flush

with the interior surface and properly sized to focus the beam to a crit-

ical volmm.

By changing the single lens or employing a series of two lenses.

the focal length of the optics could be altered. This was useful to

evaluate the effect of the proximity of the lens surface which acts as a

solid planar vail and also allowed the geombtry of the benm focus to be

changed. This becomes particularly important since it allows generation

of nonspherical bubbles without far-field asymmetries.

The bubbles are recorded photographically with a single frame

camera. Since the time scale of the phenomena is tens of microseconds

conventional mechanical shutters are not adequate for the resolution

necessary. Instead, photo exposure was accomplished with a digital time

delay of rated accuracy 1 0.1 psec triggering a flash to backlight the

image which is transferred through an open camera shutter. High speed

instant Polaroid black and white film captured images magnified four

times (4U) by the lens and bellows system.

The apparatus listed In Table 4 allows three major adjustments in

operating conditions.

1) Laser power infringing upon lens system. Gross adjustment is

made by attenuating the beam using the schot glass filters. Finer ad-

justments are made by adjusting the charging voltage across the capaci-

tor bank. To insure lasing of the rod a charge at least 702 of the

maximum voltage was necessary. This translates to (.7)
t (1.5 J) .,755 J.

since energy is proportional to the square of the voltage.

2) local length Lf. and

3) Dom converpnce angle Of.



TABLE 4. ZeMn ftEcifications

Aligment Laser
ashes Model 4020

120 ma Se-Ne

Power Laser
Apollo Laser, Inc. Model 5H
Ruby/Glass Q-svitch
Power 1.5 J/S
Pulse Width 15-30 usec

Digital Delay Generator1NC Model 7010
used in range 0-99999 + 1 usec

*i Camera
Hasselblad Model 500C
v/Zeiss Planar 1:2.8, f - 80 mm lens and 12"extension

Film
Polaroid 667 high speed (AM 600)
black and white instant development film

i~iFlesh
EG&G Electro Optics Model 85302

with Fresnel diffuser

Laser Focussing Lens

focal length diameter Helles Griot #
(in air)

Small 12 wm 17 am 01 LAG 002
Medium 18 24 01 LAG 005
Large 25 32.5 01 LAG 117
Diverging Lona -40 21 01 LPK 013

leutral Density lUters (Schot Glass) Approximate

Thickness Desnation Absorbance

LOW I = RGS 52
Medium 2 = 304 10-201
High b3am 3 502

*Supplied by Mr. Idwin Tolums, Princeton flversit7 IL

)l a'II tI "" ' ' "' 'll



65

These are two geometric parameters defining the geometric charac-

terlstics of the focussed beam. As shown in Figure 13, the "focal

length" is defined as the distance from the planar surface of the flush-

mounted lens to the point of highest energy concentration which is also

the location of cavity-inception. As a first approximation this Is

simply the focal length in air of the optical system divided by the

index of refraction of the medium (1.33 for water). The convergence is

defined as that angle at which the beam is funneled. For a simple

single law system, these two parameters are not independent since the

diameter of the incident beam if fixed (nominally considered Db a 1 cm).

Linear optics gives the simple relationship

; Lf -(Dbeam/ 2) cos ef (1)
.4

If a second, diverging, lens is placed in series with the plano-

convex converging lens it will increase the beam diameter impinging

upon the primary lens so that although equation (1) is still valid,

D bea can be varied independently. Of course, Lf Is now a simple func-

tion of the focal length of both lenses, approximated by

1. 3 3Lf +1 f2

Lf, as stated previously, can be varied to assess "wall effects".

Adjustment in 0f should affect bubble shape. Intuitively there should be

some critical energy density which incites cavity formatimu, large

values of Of will localize this density sufficiently to create spherical

II
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bubbles. Small values of Of should create a more extended volume with

this critical concentration and thus elongated bubbles (see Figure 13(b))

3. Types of Trials

Four major types of experimental trials were performed:

IA) Spherical Bubbles in U2O

These trials were performed to evaluate system reproducibility and

determine the distances over which wall effects are present.

1B) Spherical Bubbles in Dilute Solutions

Although previous experiments using this optical cavitation tech-

.nique have been performed in H20, similar trials in dilute aqueous poly-

mer solution had not been reported. The first goal of these experiments

was to guarantee the method's reliability in such solutions since scat-

tering and differing inception characteristics might be expected. Once

the technique was established the radial dynamics in polymer solutions

could be compared to the results in pure water.

2) Initially Spherical Bubbles near Planar Surfaces in A) HRS

and B) polymer solutions.

The apparatus affords an excellent opportunity to investigate the

effect of the proximity of a solid wall on the shape of a growing and

collapsing bubble. Although presently, no theoretical analysis has

been developed to treat the case for a viscoelastic fluid, qualitative

comparison can be made in experiments very similar to those conducted

by Chahne (1981) and others.

7: M 4,,ENE=
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3) Noaspherical Bubbles in an "Infinite Mediu"

A) BaO and B) Polymer Solution

The mechanism by which nonsphericities arise is the lengthening

of the "critical volume" described previously. Sequences of bubble

photos allow a detailed comparison of the evolution of experimental

shape as coupled with the growth and collapse of the cavity and theo-

retical predictions. This can be carried out both for the pure H2 0

and various polymer solutions.

4) Initially Nonspherical Bubbles near Planar Surfaces

One possible cause for differences between experimentally produced

bubbles near solid walls and real cavitation bubbles is a "competition"

between jet formation and any other nouspherical modes which would

reduce the energy available to the re-entering jets (see Discussion).

A first attempt can be made to evaluate this possibility by producing

nonspherical bubbles near solid walls with different orientations for

that wall.

4. Fluids

Distilled water filtered through 3.0 a Micropore (R ) filters was

employed in most trials. The effect of boiling to degas the water was

also tested. Preliminary trials showed that the distilled, filtered

water was sufficiently clean to eliminate stray nucleation and allow

reproducible trials.

The polymer solutions were prepared from polyarylstde at

M.W 1.2 x 106 obtained from the Averican Cyanmuid Corporation. ts

W- M
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polymer samples were approximately 202 hydrolyzed. Solutions by the slow

addition of a weighed amount of polymer-to a measured volume of distilled,

deionized H20, then tumbled on rollers to insure homogeneity for at least

• twelve (12) hours. Initial trials were performed for solutions with

concentrations of approximately 500 ppm since these definitely exhibit

cavitation inhibition in water tunnel tests.

5. Photo Analysis

No sophisticated procedures were available for data analysis.

Spherical bubble radius was measured directly from the photographs with

an accuracy better than t 0.05 cm/4. The sphericity was evaluated by

overlaying circles and checking for visible deviation from that shape.

Nonspherical measurement was less straightforward and multiple

techniques were evaluated. Each involved projection of the photograph

onto a circular polar coordinate grid and the assumption of axial symmetry

about the center line of the laser radiation. These analyses also re-

quire an assumption of the surface harmonics Legendre polynomials

which contribute to the shape.

Appendix D contains ample data and more detail on procedures chosen.

The final results showed differeaces in magnitude. but not in trends be-

tween the different numerical fits attempted so the simplest - estimating

R and aL by measuring the major and minor sxes of an image - asemployed.

I..
. -
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VI. RESULTS

1. Theoretical Spherical Profiles

In order to generate nonspherical results, appropriate radius

profiles to drive the asymmetries are necessary. Previous workers

have concluded that dilute polymer solution rheology will not cause

experimentally detectable changes in the overall size of a growing

or collapsing bubble. Stil, an O(c° ) model similar to those of

Fogler and Goddard (1970, 1971), Ting (1975), Yoo and Han (1982) and

others, which incorporates viscoelasticity, but employs the parameter

values of the present study (see Table 3). is useful to compare visco-

elastic change in this geometry to changes in nonspherical behavior.

As presented in Section III, equation (4), an equation similar

to Rayleigh's original result can be used to generate bubble profiles.

The pressure initiated dynamics are completely specified by the dimen-

sionless parameters of Table 5

TABLE 5. Dimensionless Parameters

ROp
Re .-

Ti, v°
G -P

" ioir
11

F

i~~~~~*~.W - I i... ..... ,. .. . - . ... ,
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where R 20 1 0-  ca. is the initial equilibrium bubble sizeP-P
v a

for the present pressures and surface tension. Also, the Reynolds

Number as defined here employs a ratio of the length and time scales

to define the velocity scale since no other velocity scale emerges.

The time scale, T , must still be defined. An 6(c °) time scale might

involve P* since it determines the dynamics, however, from the bubble

growth, collapse and constant radius cases, no single meaningful time

scale emerges. A time scale independent of the particular dynamics is

the surface tension time scale

= R/3p()

0 0

which relates to the period of an undamped oscillation in both the

0(c° ) spherical or e(c ) asymmetric modes.

Results for R(t) vs. t for varying w are shown in Figures 14 and

15. For positive values of w, the bubble grows rapidly until the

velocity R(t) approaches a constant. Then is no change for any value

of A visible on the scale of the graph and numerical values show

changes of less than 0.12. As w decreases and becomes negative,

collapse is described. Once again, in Figure 15, their is no visible

change due to variation in X, but f(t) does not approach a constant.

The acceleration 1(t) appears to continually increase in magnitude,

this is due to the surface tension term in the R equation.

4
4
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Time IxlOs5 *c)

Figure 14. Spherical Radius vs. Time =Theoretical

Growth

R - 1.03 x 10- 3CM.
(See Table 3)
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R/R0
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Figure 15. Spherical Radius vs. Time - Theoretical Collapse

R- 1.03 x 10-3 cm.
(see Table 3)
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2. Model Monspherical Dynamics without hternal Flow

The initiation scheme of Section IV, with quiescent ubilent condi-

tions, requires only a choice of a particular harmonic, a, and a(O)

and an(0) beyond the parameters of spherical flow. The problem Which

allows the matheaatically consistent use of an initial T(r.0) function

which is identically zero is an(O) - so and ;n (0) a 0 from equation

(111.32).

For v - 0, a bubble of constant radius, %O , the nonlinear nature

of the governing equations is removed and Laplace transform techniques

have been used by other workers .o generate a-t(t) vs T profiles. The

integro-differential character of the system is also removed for a

purely viscous fluid and physically, the viscosity is expected to

damp any oscillations. This expectation is confirmed in Figure 16

where a 30-fold increase In viscosity is shown to damp the asymetries

greatly.

Since viscoelasticity restores the time-integration terms to the

model, the possibility of somewhat different behavior exists even for

w - 0. Rowever, as discussed previously, the absence of bubble his-

tory to initiate these time-integrals at some non-zero value, in con-

junction with the short times over which the non-sphricitles persist

(10-1 seconds),servs to allow little "elastic accumulation" end re-

sults In viscoelastic behavior which differ little from those which

would occur with a slight change In viscosity. This to shown in Figure

17. owever, the fine details of the difference cannot be teproduced by

a simple change in viscosity. When on elastic element Is Satroduced,

the damping of the resulting amplitude wave decreases, which would occur

If viscosity decreased, but the period of the oscillaion Increases
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Figure 16. Nonspherical Amplitude vs. Time-
Viscosity

Vo external flow
a0 - 0
(see Table 3)
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which would result for a more viscous fluid. These results agree with
those of Inge and Bark (1981) who generated results using techniques

suitable only to i(t) - 0.

Cases of more interest involve non-zero dimensionless pressure

change, w, values. Stability analyses predict that bubble growth will

restrict the viscous nonsphericities causing the bubble to remain nearly

spherical. Typical results presented in Figure 18 show this to be true

for the viscous fluid which has nonsphericities which become overdamped.

However, the viscoelastic fluid in Figure 18 exhibits somewhat different

behavior, here, as R(t) becomes almost constant, the shape of the bub-

ble, as measured by a2(t)/R(t) also appears to approach a constant.

Earlier stability analyses suggest that conditions which include

bubble collapse may result in nonsphericities which grow without bound.
.1

Figutes 19 and 20 show typical profiles which confirm this prediction.

. Good numerical convergence was achieved even for such large amplitude

values. If the linearized system remains valid such bubbles would

exhibit breakup or toroidal ring formation and this mechanism for the

dissipation of inertial and surface energy requires consideration.

Experimental trials are necessary to determine if these predictions are

even qualitatively correct.

3. Experiments with No Externa Flow

The initial trials with the experimental apparatus were to guaran-

tee the ability of the system to generate bubbles, first In water and

then in polymer solutions and of the photographic system to capture

Impas of those cavities. The first successful trials resulted in

photos, typical sw les of *hich are shown In Figure 21. Note that

these bubbles are quite large, with a readius greater then 0.30 am at
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T ir= 0.3 R
a(t) Roe Do3 RO

43 0o3

L~21

Figure 18. Normalized Amplitude vs. Time
Growth

No external flow
io- 0

Growth profile shown
(see Table 3)
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1.050 Usec. They are created with center In approximately 1.50, cm

from the closest asyrmetry. The solid "wall" of the planar face of

the plexiglas lens influences the bubble in all dynamic cycles other

than initial growth. The reproducibility of these bubbles is excel-

lent with a superimposition of the Images usually possible even Includ-

ing some of the fine structure of the bubble. There are occasional

"gliches" bubbles which do not reproduce trials for Identical condi-

tions. these appear to have a number of possible causes:

A) Lack of laser reproducibility. A qualitative indicator of

the laser pulse characteristics can be obtained by looking at the

bright flash at the original bubble center which Is the overexposure of

the photo plate caused by the laser luminescence. Although these trials

have been selected for their reproducibility, some of the variation

possible is indicated by a comparison of the spot in the frame at

525 pasec and that at 1570 usec. The latter event *hows a secondary

brightness separated from the main. Such differences usually corre-

lated well with unexpected differences in the cavities.

B) Overly Rapid Repetition of Trials. Early In testing It be-

came apparent that reproducibility suffered when an experiment was

repeated as quickly as possible, lited only by the charging cycle of

the laser capacitors which requires 5-10 seconds. The lack of repro-

ducibility was particularly evident with conditions and at times which

showed nonspherical bubbles. At such times waves were also sometimes

noted on the free surface of the fluid Indicating that the fluid

otions Induced by the first bubble were not completely dmped. It was

found that an Interval of 60 second& between trials wes more than suf-

ficient to elmiuate this effect.
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A puzzling feature of the potogahc sequences to the recording

of so bubble Impg for tim delays of 500 Vse or loe. Initial hypothe-

sea of a bubble Induction time proved to be unfounded. lbM delay Is

caused by a lag between digital delay triggering end the laser firing

sigma In the circuitry of the looter power supply.

A. Spherical Buabbles

Spherical sequences were generated with a criterion for repro-

ducibility based on the measured. radius between two trials varying by

52 or loe. The viability of the technique Is demonstrated In Figure

22 which shows date for spherical radius vs. time in distilled 810 and

476 pp. polyacrylamide solutions.* Conditions used were

medim lens -- f3  1.5 cu.

sedium neutral density filter

802 laser charge

tch of the polyacrylamide data bars represent the man of at

least three trials bounded by the resulting standard deviation. Ie-

producibility io excellent* especially considering the high growth and

collapse values produced. The slightly higher collapee rate for water

may result from difference In laser Interactions with the two fluids.

The order of magnitude analysis of Table 2 suggests that a small part

of the difference my be theological, sinmce they occur in the region

of low velocity where Inertia Is smallest. * Th would be eliminated

to smaller bubbles where surface tension becaume even wore, baportant,

howeVer the aso agere Is te mimims for the single shot techeque

Vlere t 10 yse mips as a iMit em reproducibility.
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ION-

a. 525 b. 1050

c. 1550 d. 1570

4,

e.2000 f. 2500

Figure 21: Bubble Sequence In Water
pyeo., 4x1
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B. Spherical Bubbles near Solid Walls

Although no theory has been developed here to include the influence

of solid walls or free surfaces on the evaluation of bubble shape, quali-

tative results were of interest to confirm the findings of previous workers

and also to allow comparison with future trials which would include mi-

tially nonspherical bubbles near the planar surface. The present photos

confirm earlier findings that a solid wall induces bulk motion of the

bubble toward the wall and subsequent jet formation as collapse proceeds,

no visible difference appeard in the jets in the different fluids (see

Figure 23).

C. Monspherical Bubbles

The scheme by which nonspherical bubbles can be produced in an other-

wise quiescent fluid was described earlier. This possibility has been

mentioned by Lauterborn and Ebeling (1977), but no quantitative results

exist or any assurances of reproducibility. The problem of laser "spot"

reproducibility mentioned earlier with regard to spherical bubbles is

even more crucial here since the distribution of laser energy along a line

segment is needed to create a disturbance of small bubbles which grow and

merge into one nouspherical cavity.

Initial trials were encouraging since nonspherical bubbles were

seen to be feasible but they suffered from an eztrm degree of randoi-

sees In the particular distribution of initial nucleatic sites and

their strength. The line of cylinder which bounded the nucleation

region was well defined but the distribution of bubble formation within

the region was sporadic which caued reproducibility to suffer. Nore

power was necessary to create reproducible bubbles due to the incroed
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length of the optical path in the fluid (4-6 ca) wbich served to absorb

and scatter som light energy and to the Intentionally lengthened

region in which sufficient energy concentration was desired.

This power requirement resulted in narrow range of power in

which nonspherical bubbles could be generated. The lower bound was

determined by the factor just cited and corresponded to the low den-

sity filter and 85% charge. The energy of this pulse is nominally

1.0 J. The maxims is restricted by the laser, 1.5 J. This range is

considerably narrower than the corresponding one for spherical bubbles

which could be produced by .50 J and less. The resulting variability

in nonspherical bubble size was small with maximum equivalent radius

between .3 and .6 ca., but those which could be generated were clear

4
* and reproducible.

CoWplete sequences were generated and analyzed for distilled

water at two power settings and two polyacrylamide solutions near

500 ppm. The bubble shape and size were analyzed (see Appendix D)

and the results are shown in Figures 24-27. As discussed in Appendix

D.1, no best fitting procedure could be established, all gave compar-

able results, so that the simplest, measuring major and minor axes

and assuming a shape conforming to the second harmonic was used.

Thus, the error bars In the experimental data result from three

sources:

1) reproducibility of bubbles

2) photo image measurement

3) uncertainty In fit.

The relative Importance of these factors varied from image to imp
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Figure 26. Comparison of Erperimentally Determined Non-
spherical Amplitudes to Theoretically Generated

Values III

Experiment - Laser: 67.05, low filter
Lens separation: 4.5 m.
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within a sequence, although factor 2) w usually least Smporteat. be-

spite these uncertaiuties a smoth progression of shape ws the usult.

"4 The 1(t) vs. t profile was smoothed by a best fit toe aourier

series when Initial time. period and the ontribution and elgenvelue

of up to five eilgenfunction were varied. These fits ae shown as
the "center-line" dotted curve in Figures 24-27. This fit as then

differentiated twice for use as the forcing function In the solution of

the nonspherical amplitude equations. The changes in sign of the redial

acceleration i(t) In the fit profile. corresponding to inflections in the

curves, occur because of the fitting procedure and the varying number of

data points taken at different times. Despite the resulting physically

unrealistic values, the nonspherical amplitude profiles driven by the fit

are well-behaved. The curves are smooth because the Inflections occur

while the bubble Is growing, a period during which sonsphericities are

stable and relatively insensitive to the details of the radius profile.

"A" The Initiation of the model required an initial time to at which

the amplitude a(t ) had been measured. This time. t o , Was chosen,
0 t

before any data-specific modelling was done, by taking it as the time

of the first data point. The first data point corresponds to the

first bubble photo in a time sequence which appears as one, relatively

smooth, cavity and usually occurred by 550 vsec or 50 usec after any

bubble is visible. Since there was no external flow and motion was

present for less than 50 Psec previous to to P bubble-induced fluid

history was ignored; the stress integrals begin with sero value.

Variation of 1(t o ) and fluid parmeters was then performed to optimize

the agreement with experimental data.

Setting 1(t ) to various values ad varying fluid parameters

showed that ,iscoolatdle effects um sma as would be expected

from previos model wsus for situetiom Itbut siteeal fla Md with



zero stress integral1s. 11Mg there are two Important degrees Of freedom.

th Inta Velcit ;(t ) and the viscosmity V. MW b. hac of v~c

elastic effects also reduces the sensitivity of the agreement to the

Initial time too Qauanig to will not alter the model predictions for

a given v and corresponding Initial conditions, It can Only change the

numiber of data points to be fit and heire that amoer Is alrea4 maxi-

The viscosity (or Reynolds Number) values which gave the good

agreement shown by the solid lines were lower (or higher) than expected

for water. They were between 0.1 and 0.3 cp. getting the viscosity to

1.0 cp without altering the Initial velocity resulted in predictions of

overdamped oscillations during bubble growth; the amplitude a2 (t) did

not Cross the a2 - 0 axis while radial velocities were positive. in-

creasing the magnitude of the initial velocity ;( t0 ) and the viscosity

did serve to drive the amplitude past spherical equilibrium, but the

shape was altered, see Figure 24, and fit was less good.

The most encouraging aspect of the model results my be the accu-

rate predictions of trends even when deformations become large so that

the linearized analysis should break down. In both water and solution,

the final fram of a sequence, as the bubble volum became very small,

could show one of two distinctly different "asymptotic" behaviors. One

type Is suggested by the upper left-hand Illustration In Figure 9; the

nonspherical amplitude Is positive and become large as R decreass so

that the cavity Is extended In a line along the axis of symmetry. The

other extrome occurs for negative amplitudes and gives the form shown

In the lower right of igure 9. In experimentl pbotoe this appears

as an Impg lMeFigure28(a) and becm avertical Umas a-.-0.

Such shapes are too distorted from the sphere, to be represented by an

equivalent tedim R end aplitude ft.. aod predicted b7 this theory.

Still, the model sceoessfmlly predicts these flail trea.s owhisa
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:4

extremely useful for the study of bubble breakup.

D. Nonspherical Bubbles Near Solid Walls

The premise upon which this work is based Is that the role of

velocity fields in cavitation dynamics extends beyond the creation of

the dynamic pressure difference necessary for nucleation, that it alters

the shape and the size, i.e. the total behavior, of the subsequent cav-

ity. Another factor of practical importance in this behavior has beenIshown, both here and elsewhere, to be the proximity of a solid wall,

but this effect has only been investigated for initially spherical bub-

bles. Trials were conducted to investigate any interplay between non-

spherical bubbles and solid walls. They are complicated considerably

by the introduction of a direction vector for the bubble, which can

simply be chosen as along the initial axis of symetry for these bub-

bles, and it can vary in orientation with respect to the solid wall

which can be represented by a normal vector. Quantitative comparison

to results for spherical bubbles without detailed theory is ambiguous.

The distance of the initial center of the bubble from the solid wall

scaled on a maximt bubble radius gives a good variable with which to

correlate results (Chahine, 1981) for a spherical bubble. However for

asymmetrical bubbles, the amplitude of any initial nonsphericity along

with the orientation of the direction vectors will introduce much more

variability into the system even for identical fluids.

As a result of these complications, only qualitative results

were sought in these exploratory experiments. Comparisons between

820 and polymer solutions were also made.

.~ '
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Photographic evidence from these trials lead to two tentative

conclusions:

1) A strong competition does exist between the jet-forming effect

of a solid wail and nonsphericities which are separate from that effect

and it varies with orientation.

2) Ho large differences between fluids occur.

This first conclusion is supported by the photo sequences of Fig-

ures 30 and 31 which show no Images of a well-formed jet like the one

in Figure 23. Figure 23 differs from Figure 30 and 31 in that the

initia: optical cavity in the former was spherical while intentionally

nonspherical bubbles were initiated in the latter. Figures 30 and 31

are representative of images taken over a range of bubble sizes and

wall proximities. All showed bubble migration toward the wall upon col-

lapse, but none showed an Impinging jet. Figure 30 shows the results

when B and N are perpendicular (see Figure 28(a)).

When I and N form a 450 angle more experimental problems develop

since a bubble which is too highly nonspherical Initially, and close to

the wall will contact it. Thus the location of bubble center is more

limited than for the previous cases. Here, again the solid wall causes

bubble migration toward it with distortion but no jet is apparent (see

Figure 31).

Trials with other orientation angles, wall-bubble distances and

500 ppm polyacrylamide solutions yielded similar results. Of course,

such trials are not comprehensive, especially since the nonsphrtcal

bubbles are very limited in their size and shape profiles. Uwsgeer

* the contrast in the case of jet formstion for spheri al bubbles end the

absence thereof for asymetrical bodies is striking.

Iip±
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Figure 29: Bubble -Wall Orientation

BB

a.B I N b. B450 N

Figure 30: Sequence - B . N i psec., 4xI

a. 1350 b.1375

c.1400 d.1425

/4
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a. 600 b. 1000

Sc. 1400 d. 1450

e.1475 f.1500

Figure 31: Sequence - 13 & N at 450
.4xl



*4. Model with External Flov

Recall the model which generates a completely self-consistent fluid

history by postulating an external flow. The details are developed in

Section IV and summarized here and in Figure 32. In the semi-infinite

time domain with upper bound time t - T - 0, the equations governing

asymmetric dynamics can be driven by a mathematical forcing function

which corresponds to an externally Imposed flow in the physical realm.

Mathematically, any such forcing function can be linearly decomposed into

terms with time dependencies of the form

o (t) e(t) - exp[( j iw )t], t < 0 (IV.18)r~j

Since this forcing function is bounded throughout the interval [-., 0],

the time constant is positive (and real). When specific values of

and the frequency Wj are chosen, they completely determine the forced

response of the fluid for a given angular mode n and fluid model. The

stresses in the fluid and shape of the bubble are also determined. The

terms remaining in the resulting flow field as r - are

viRe IA 6 wy (t~ymr
n j nn~

(IV.24)

Re n.j -nlp(9

where A -A is a complex constant and Aj(t) (t) is a complex

function of time. For n - 2, as shown in Equation (XV.25) and Figures

6, 8 and 10, this spatial variation corresponds to two and three-

dimensional extensional flows with tme-dependent elongation rates

-su
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directly proportional to A (t).

At time zero the external flow has generated nonsphericities in

the bubble of radius 1o and the added complication of a time dependent

equivalent radius, R(t), can be introduced. (See Figure 32.) The

particular solution obtained by the separation technique of Section IV

no longer applies when R changes so that the full, numerical, procedure

of Appendix C must be utilized. Within this procedure the external

flow is no longer constrained to the time dependence of expression (IV.18).

To investigate the influence of a further alteration of the flow, the

amplitude of the oscillation is allowed to decrease with time, but the

frequency w was retained. This amplitude variation is characterized by

a time constant, Tdecay. Various mathematical forms of the decay function

were tried, e.g. a ramp or a sigmoid, but the results were insensitive to

the particular choice so the most common form of decay was chosen, an

exponential, s.t.

A (T) - An exp(- - sin(aJ ) (7)

for .1 0

Physically, this damping was introduced to simulate a change in flow

environment for the cavity and surrounding fluid, e.g. migration of the

bubble from a region of high extension to one experiencing lower rates.

The time dependence of the external flow is characterized by four

parameters: the complex amplitude constant An, the frequency w and two

time scales C and Tdecay which apply in the intervals [-.,01 and [0.,m

respectively. Dimensionless groups which incorporate these value are

shown In Table 6. The scaling of the amplitude a2 on the magnitude

Via
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IA21 results from equations (UV.28) and (TV. 30) which show that these

two quantities are directly proportional at time t - - 0.

TABLE 6. Dimensionless Groups for External Flow

a2

JA2 oA o (n- 2)

I fl W ,
Tflov transient = f.t. T

0

T
decay d O0

Sensitivity of the final results to r flow transient was easily

anticipated. As the value of rf.t. decreased, viscoelastic changes were

also reduced. This is consistent with the importance assigned to fluid
history in distinguishing viscous and viscoelastic dynamics. Since this

work is concerned with viscoelastic changes , this effect was minimized

by allowing

rf~t " (8)

Sensitivities to 7 flow and Tdecay are discussed in conjunction with the

upcoming results.

The simplest flow case obtains for w - 0. a bubble of constant

volume, just as it does for the quiescent fluid analysis. Results for
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two different flow frequencies or Tflow values are shown In Figure 33.

The only difference between (a) and (b) Is rfto " Figure 33(a) shows

that -flow " 2.5 x 108 represents low frequency or slow flow since small

instantaneous strain rates whose effects can be multiplied by visco-

elastic Stress integration result. Thus, a rather large difference is

j seen between the viscous and viscoelastic fluid responses and it increases

with increasing Deborah number. However, as -Cflow decreases, the effect

of viscoelastic properties decreases (see Figure 33(b)). The curves do

not oscillate about the a - 0 axis because for these flow frequencies

and phase, the flow is unidirectional over this time span, constantly

"pulling" the bubble in one direction.

Conditions which combine flow and growth show no qualitatively now

flow effects. The growth damps the oscillations and does not allow any

initial viscoelastic differences to be magnified.

In Figures 34 and 35 results are presented for different collapse

profiles with idecay - 0.25. The damping of the external flow served

to magnify differences between fluid, which were present at t - 0.

This is entirely consistent with the notion that the viscoelastic fluid

will "remember" the past occurrence of the external flow while the via-

cous fluid responds only to its instantaneous presence.

Ii



FLOW flo
a

lAI R 0 ; I

j0.0 1.0
a TT

f owa 0.x1

lAI R07. ~ Do

rf low 2.5 a 03  'I/o

Figure 33. Effect of External Flow Frequency

(see Table 3)
-. 40

d

4 -



105

I

J FLOW
n a -- 0.1 Collapse

a Tflowi 2.5. Ia0

AIRoTo_ Do
0

0403- 2.50.

-4 " ... /.

40

0.0

Figure 34. External Flow, Flow Decay and
Bubble Collapse I

(see Table 3)

<4~

.. ' ' 
t



FLOW

a 1 *n 1.0 Collapse

IIO Tflow 2.5 x 106 1 /

Do
- 0/

0.1 -- 2.5' 10

0.0V
A5

T doay 0.5

Figure 35. External Flow, Flow Decay and
Bubble Collapse II

(se Table 3)

I -7



107

VII. CONCLUSIONS AND DISCUSSION

The results of the previous section were presented individually.

but it is only when they are taken collectively that more exciting con-

clusions can be drawn about real flow cavitation and their contribution

to the understanding of cavitation inhibition can be assessed. In

Table 1, the scope of the present work was resolved into three cate-

gories. The results obtained here suggest that:

1) Without any external flow, fluid theology, and slight visco-

elasticity in particular do not strongly influence cavitation bubble

dynamics for A) spherical or B) nonspherical bubbles. The latter cavi-

ties do display non-negligible effects.

2) An external flow which is the sole source of system asym-

*. metries will influence bubble dynamics and do so through fluid rheology.

3) The characteristics of bubble collapse near a solid wall are

altered by nonsphericities which are present due to influences other than

the "solid wall effect", eg. external flow.

Of course, these conclusions all hold only for the particular

theoretical and experimental systems tested. The fluid have viscosities

on the order of 1. cp. and the elastic number, EL, has a value near

unity. These values may underestimate the influence of viscoelasticity

on real dilute solution since oscillatory viscometric measureuents for

similar solutions give zero shear viscosities approaching 1 poise

(Chang. 1975) but the values employed do model the experimental results

very well which may be due to the sheat-thimning behavior of the fluid.

Pal -
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There is a fundamental rheological difference between the non-

ephericities in conclusion 1) and conclusion 2). In the former case,

theology is involved only in the evolution of the asymetries, not

their genesis or initiation. The fluid properties actually serve to

generate the shape and stress field In the latter case, through the

external flow. Since rheology is Important in both generation and

evolution, (pro-zero and post-zero dynamics), it is more important for

this case.

Combined with conclusion 2), 3) can be seen as an example of a

situation where viscoelasticity can be very important in cavitation

near solid walls. Any flow past the wall will serve to create a stress

field surrounding the cavity which will vary according to fluid theology.

This will create a nonspherical bubble, and these flow induced asym-

metries will effect the jet induced by the solid wall upon bubble

4 collapse.

This work also makes it clear why many previous model systems,

which were constructed in an attempt to display large viscoelastic

effects comparable to the cavitation inhibition of Figure 1, failed.

These were designed to simulate cavitation in a quiescent fluid, and

thus Ignore the importance of stress history and flow.

_ , ~~~V.... .
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VIII. THE NEXT STEPS

1. Theory

Experiments have shown the expansion technique employed here to

be valid for surprisingly large departures from spherical shape. How-

ever this first order procedure is probably as far as a linearized

model can be extended. The next step along similar lines in theory

would incorporate a fully nonlinear constitutive model. Some of the

relative simplicity of the present work ight appear retainable through

the introduction of a second expansion parameter, this one characteriz-

ing the flow field and not the bubble shape. Then, a second order expan-

sion in this new parameter would be formulated so that nonlinear rheo-

logical effects, especially normal stresses are generated. Unfortunately,

there are at least two definite problem with this approach. The second

order terms will eliminate the use of the linear independence of the

spherical harmonics. The angular dependencies will no longer be separate

from the (r-t) formulation (see Appendix 3). Even if this were resolved,

the size of the bubble, governed by the zeroth order equations, is not

coupled with the easymetries and there Is an interaction for the large

deformations that the second order expansion would attempt to predict.

The next useful step in any modelling effort is treatment of the

full problem. This is an extremely difficult undertaking since it is

highly nonlinear, transient, contains an undetexulned free surface and

requires an infinite domain. Since the development would aft toard

incorporating a general flow field and a solid wall. no sainetry @it-

plifications emerge and the full three-dimensional proble appears

- ."I
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necessary. Marker and cell techniques which have been used to model

bubbles near solid walls without external flow might be applicable for

the Newtonian liquid or even a shear thinning, but inelastic, fluid.

However, incorporation of non-Newtonian, elastic, effects probably re-

quires a finite element treatment, techniques for which are still

under development.

2. Experiments

Many of the experiments proposed here are in various stages of

development at Princeton University.

The early successes of techniques to generate nonspherical bub-

bles with or -ithout solid walls present suggests that similar experi-

ments be attempted on other liquids and on the same fluids duscribed

here, but under different conditions. The aim of such changes in ex-

perimental conditions would be to broaden the range of bubble sizes

and profiles for which reproducible trials can be conducted. Alternative

fluids include a glycerine/HaO solvent system which allows variation in

viscosity through the composition ratio, and could be investigated with

and without polyacrylamide solutes. More flexibility in useful trials

for the aqueous system night be achieved by locally or non-locally dying

or tinting the fluid to change energy absorption by the fluid. Such a

procedure would need careful testing for such complications as asymetric

thermal effects which would alter reproducibility.

All trials should be viewed with particular regard as to bow end

when jets form. These variation nmight be measured using a pressure

transducer on the solid wall to record the iqpact of av jet which forms.

............. ,..w*
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More sophisticated photographic techniques may also allow measurement of

jet velocities.

Flow experiments also need to be performed. The best flows would

be the two-dimensional extension approximated by a four-mill or four-

roller apparatus or two impinging sheet-shaped jets. However any well-

characterized flow which imparts stress history to the fluid would give

useful results.

1
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APPENDIX A: o(e) Equations

A.I. Toroidal Field Equation

The full velocity field, to O(e), is given by

V-vo + CVp + C-v (111.16)

- -o Y -+ p +-Cv

vhere the (c0 ) field, in spherical coordinates, is

.{ (Yo) e " (yo) # 0

I

R
(yo)r -T

The potential contribution derived by Plesset is

v pp,n (M11.19)
V. 

n

e+2
:p,n n+1 r [;n + 2 1n

Rheological contributions are contained in v term which obtains from

.v

Equation (111.28) as
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where B (rt) in defined as the function containing the radial and tern-

poral dependence of the Integral %~ defined by equation (111.29) with

the external flow contribution of equation

(r~e,*.t) - Bn (r~t )y(6.*) (A. 2)

n n n

+ n+1 I -n T (st)dSjr:

+{- R p 2 P+1 [an(t) - A (01]
n+1 n n

(A. 3)
r

+ n r n+'1 T (s~t)dS) -UI
2n+1 j

R

X (rt)r n + Z (~~

n n

This equation also serves to define X and Zn. with a n(t) given by

equation (111.30).

The goal of this first derivation is an analogue to the vorticity

equation

TF+V* - w * VI' - Vx(stross) (111.22)

since the simultaneous evaluation of the pressure field end toroidal

function Tn Is not necessary nor Is the potential flow field. This
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ust be accomplished with special attention to the Lagrangian and non-

instantaneous nature of the stress expression. The left-band olde (MRS)

of the equation, containing the terms which represent Inertial effects

Is not altered by the particular constitutive relation employed, but does

need to be expressed in the proper coordinate system.

The components of the vorticity vector In Rulerian coordinates are

first order in e.

W -V X(v + v mV xv(1.)-p -V -

(W 3T (A.4)0'1rsinO 90
n

77The (LHS) r*the radial-component equation of the left-hand side of

the vorticity equation, has terms which are all identically zero. At

first order in e, the e and * equations vary only in their angular de-
pendencies

mine a# B
(A. 5)

-; at+ ax [1(iP2 TUJ)

This term can be expressed In Lagrangian (H,r) coordinates, defined by
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equation (111.38) as

I T (E,-r) ?T (H*?) (.6
1: --- 2 R2i 3(A6

where

L - (R9 + 3H)01/3 (A.7)

The right-hand side (RIIS) of the vorticity equation consists of

stress-generated expressions, so it must be analyzed more carefully

thart the left, with particular attention paid to the order and reference

frame in which time integrations and spatial differentiations are per-

formed. This is crucial for proper derivation of terms of the form

~r x r *rr-r/

Y% V (N(r-'r');(H*r')jdr'

where -r and j are stress tensor and strain rate tensor, respectively,

and the subscripts r and 9 are convenient shorthands to specify the

particular reference fram In which the del-operator Q!) Is defined.

Begin with expressions for the rate-of-strain tensor (rt

Mai
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u coe
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~re Or ar r r nar a

B sine 
ayn-n

.,,) .v) _+.na 1)

+ sin =. sina

The stress tensor can be written 
In term of i1teOrale of the *train

rate coponnts as

IV) 2 f I1 (A.10)
rr a
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( 1 f2 6 3i2y 3 + f cot6j

(Ve (V (f + f ) ay

(ve (v 3 4 3e

I Te. M.e f Isin6 2- BY
et~ sn #0 B3$nl

+1 32!y

f 3T 34' sinf 34

where

f 1~n(H,,r) - jN N(T -' -r Hd' (A.11)

f3n(H,-r) - N(T');T j-r)1 as

f (H.r N(T-r' )[r j (;)jjjdr

despite some cumbersom symbolism, these time-integrals are evaluated

for constant R. while with In the stress expressions they ore operated
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upon in the (r.t) system. Algebraic manipulations result in the cor-

ponents of the right-hand side of the vorticity equation

x ( )(A.12)

sine 3# 1  P Wex

4 (f f ) + 1) (2f -f -

12r a 1-3 T 2 3 4

a2 f

-r'(f 3 + f 4)

4 NoJK(- -1, + T + 1,L a2i - '

+ 2n(n+l) No I -r
L S iN

,7777
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afT 2 M)dr

where the final expression comes simply from direct substitution of the

definitions of f, fadf From the definitions of B ,X andf f2 ' f3 adf-nn

Zn it is possible to simplify these expressions, using

r n

w =B X n- (n+n()1

-a-r-- n(n-l)r 2 Xn + (n+1)(n+2)r ~3 Z + ~ (A.14)

and combining like terms and integrals, the stress-related expression

becomes (A.15)

1 r'{r2n(n-2)(n-l))X L'(-2

2 2(n+l) (n+2) t3) ' (n+3)

TUI + n(n+i) Id-0
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+ 2L .~JN' {[-(2n-5)(n-1)]X L'(-2

- (2n+7)(n+2)Z nL'-('+
3 )

T
+ 3 I dT'

L' 4 - J f 2(n-1)X L'(2
2(+)ZIn+3) T
2(n+)Z L' + -rId-r'

The differentiation in H can be performed inside the time inte-

grals and the operations applied in deriving (A.13) and (A-14) can be

re-applied until the RHS is derived in the form which was employed in

the final T-equation (A.16)

-E2 JN(- '){2n(n-2)(n- 1)X" (H,T')L (-2

-2(n+1)(n+2)(n+3)Z 
n (H,T')Ll' (n 3 )

T7 (H.T')
+ n (n+l) LF Idr

+ 2L (-)((n5(-)a2X(,)L n)

+ (n+2)(n+3)(2fl+7)Ztl(X.r#)Lt-(1 6 )

* .- -7W 7
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T (H. r')
-2(n 

2+n+I4) ' L-i---

+ L 4 N(tr-r'){2(n-1)(n-2)(u-5)X (Hi,r)LI(n8B)

-2(tr+2)(n+3)(n+6)Z Ht)'tl9
n

+ 2(n 2 +n+8) T~y- n (H, 4-aT- + I, a2T' d-r'

Thuss the dimensional vorticity equation* expressed in terms of the

toroidal field function Tn (H.r) can be written as

2R T aT s~T - (n+1).T

3T R~ vL[2 -F + LO Vs

f 2 J . x C F 1 2 (H , r ') d i I

+ LS Jexp(L ) I 3(E1,F')dT'l

where the inltegraud* 1, were 11iven previously in (111.41).
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A.2 Amplitude Equations

in order to derive the boundary conditions at the bubble surface,

the asymmetric pressure field must be evaluated ar r - . (H-0O) as must

the normal and tangential extra stresses.

The contribution to the pressure from the v-velocity is evaluated

by integrating the equation of motion. In Lagrangian coordinates, f or

the e-component

0 { +~jf (LV) + ae L(

+ ((A.17)

where v. (yv )e Calculations performed in the development of the

T-equation give:

2f2
(y -o ~ [-n(n+l) + 1] (A.18)

The angular dependence of each term in this 6-equation except the pres-

sure term has been determined to be *ae. Thus the pressure term

also has this dependence and can be written to define P, a

~v HOr) v (II.r)7'e#

& ________________
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Thus, angular dependencies can be factored from equation (A.17) and an

expression for P v(H, ) results. Fortunately, only the value at the

bubble surface, H-0, needs to be explicitly considered. If, in the

development of this expression, the shorthand notation

(v) S(H.T)
V e V (A.1)

e ay L
Be

is adapted, then -Xn n3 ~

- - 1L(n- 3 ) T(n+)L- ( + 4 - n(A.2)w(LVe )  X Un  + Z n 1 Cr+)(.9

and

aVe tn-i) e a?

3 R R a% 
(A. 21)

-0 R

R T(H-0,r) + 2n+1 R(n-) A

(2n~lEln-!) lln-2 )R [an(.) - A(r) ]

The stress term are also considerably simpler when evaluated at the

MOM.
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surface (A.22)

2f2 5 3 3f4

(1-u(n+1)] -j- + - +

1 '{-3 T n (-0 r'

R

+ 2[(n-1)(n-2) + (n-2)(u+3) 
( -j ) -

and

(f3 f) R2 -(f 3 + f4)

'L 3 4 ;

+ 31 n )R(n5)[

S[(n- 
1)(n-2) 

(n+2) (U+ 
5) ( #) -  

a

Combining these results (111.44)

P (04.-r)/P

-2((u.-l)(f- 2 ) + (n+2)(n+3)( J')' [n) (r')'%(r'

ilI''1" 
I" I A,1
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+ J f -r){

+ 2[(n-1)(n-2) + (n2)n3(.m~R n2 o x(-r')-A ( r')Ijdtr

+ n(2n+l) R7 (C1
U+1 (IR) n%-A

+ R T n(H-O,r)

n 3

R

_i (2n+1 3A

The potential flow contributes to the total pressure field through p

9 which was derived by Plesset to be

p ( R,$,.t) - P (R + 3i + 2 (A..24)

at H 0.

Since this has the same angular dependence as p. an analogue to PVis

found to be

P (HW0,'r) I
p(R n+ 3 n+ Ran (A.24
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The unit normal to the surface, 1;9 also enters into the 0(t) boundary

conditions

-Sa JA i By (A.25)

r tr r Be00 rsBlue3# Z#

where a e~ and e. are the unit vectors. The dynamic boundary condi-

tions are

Lk X *n. - Q(A-26)

g * a n~ (A.27)

where the former condition Is for zero tangential stress and the latter

expresses the balance which must hold between any discontinuity in

normal stress and surface tension forces. The total stress tensor a.

includes the isotropic pressure just calculated in p p and p , and the

extra stress T. The three components of the tangential stress condition

are

r :0-0

:n ra #rn r+nr a n-n# Or % o

* nr a e nT + n e nn ar nr

The potential flow contributes to the extra stress in the fluid through

the rate-of-strain tensor for that flow field (A.28)

ii'
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S(P) .. 2 Rn+2

e (r.t) - 2 (E)(" Co(t)[

1 R n+2

1 1 a~ cote ny,

*~P *P~1 R n+2 .()2(n+2) By!Yre =e r r (n+i) a

.(p (P 1 Rn+2 2(+) 1 3!
Y4 -Y - ( n (n+l) sine a#

*(P) •(P) 1 R n+27 Ye, "(-- )rY Cn(t)

2 a Y 2 cote 3Y
sine arae sine 3#,

where the time dependent function C n(t) is defined as

C (t) " (t) + 2 a (t) (A.29)
n n R~t)

The angular terms In curly brackets { can be simplified using the

identity for spherical harmonics

311

sin ~ (sinS 1+ -AT (t+1)?(1.3
BIF1 - as A -$-:ure Iz j I
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Thus, for the **-term.

1 1 92y an coteOay

7, +(111.13)

and, for the 0#-term

2 a2 Y 2cote 3 Ai
sine a83. sine3f -n

The only contributions to the tangential stress condition at first

order in c will come from a O or a er at 0(W) and a rr' a, or a eat

0(C0)

-r* (A.30)

36 sine a*
r-R r-R
11-0 B1-0

- Nt f 3 2(1**2) n
---

+ 1 (T r r n
r U Sr Sr

r-R

N1~ 1 2 u2 (.A)I T ~ n (n+) -2_
_ _I +9 20 3 .

it D+
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no U -UG (A. 31)

i ay
sine 84

nraeefl 6 0 rr r

tfl, 2R~ dJ' ' + (rt
-f

a ft 4R2' dr' + p,(r,t)]

U6 IN'R

These combine via (A.26) to yield the tangential 
stress condition,

Equation (111.46).

N TT- (+2OjT t')

-(n+1) Tn (-,'

+ 2(2n+1)R (n-)(,)[,(' ~r)1C

6(n+l) I-4+dr' -0

%41'



The normal force condition at first order in e reduces to only

one stress component balancing the 0(c) surface tension force, but

each must be evaluated at the deformed surface

n t a O n (A. 32)

r -R + caY

j 2 1 j2[j Y.- (sine -

r - R + caY

a a (n-1)(n+2)Y"'

r - R + caY

The stress component is given by

arr anrj +an .t (A. 33)

L-R+ caY lim - 0 B

The terms needed at the undeformed surface are those that are first

*order In c. (A.34)

JrN ;(V) +.(P) + v+p

4 4'rj JI[rr ~Yrr d'

lim -
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, n+2 3T * +B

B -0

(- ) ( a"+ + 2'a1 ,,dTI'

n n PoI.

+ (pv(I-O.) + -(RG + 3i&a + 3A)) T1

T 2(2rrl)R(n-2)
-, p J2N' {- n2+)~z 1 A 1

n+
(a.'* + 2a ?, d 'uR8  uR n

+{fP(H-OT) +4j(Rn+3i+29a )Y

The first term can be replaced by an expression derived from the tan-

gential condition (111.46).

The contribution to the stress resulting from the surface deforma-

tion is

L H L ( -- T'q +(po) (A.35)

at H O, where p0 is the pressure field from the spherical flow given

by

P (A.36)

Sp[(l'" + 21i')/L - yl PRI L43

M-., -&I Q.,
............................................ .............. ...+ +............... .........
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Contribution (A.35) is expressed in terms of R and derivatives as

%(T) {1 2 pL 2JW (T) )dr

- p~T)1Y~ (,*)(A.35')

Combining (A.32), (A.34) and (A.35) the equation of motion for an(r)

results (111.45)

R(Ti (T ) + (T

T a (-r')
-2(n-1)(n+-2) IJN'[ n~' dTI

n--I

+ R -ii(T)a n(T)-

-4(n-i)(n+2) JN L -RZ (T) d-r'

+ 6n(n+1) J; .tLL.dr'
R-(-

12 a (-r12 () dr'R(

+ %(r)(+2
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n(n+1) Nt[Ejr~~ d-r'

LA(-'

+ ~ ~ pVn(B0T
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A.3 Viscous Limit

A necessary, though not sufficient, condition for the validity

of these results, (111.41), (111.45) and (111.46) is their reduction to

the expressions for a purely viscous fluid derived by Prosperetti

(111.27), (111.32) and (111.34). This Newtonian limit should obtain

for the special choice of memory function

N(t) - u6(t) Newtonian (A.36)

where 6(t) is the Dirac delta function. This relaxation modulus will

serve to reduce the time integrals to the value -of the integrand at the

time when the argument of the delta function is zero.

f i6(-T')f(t')d-r' - f(T) (A.37)

Thus, the distinction between Eulerian and Lagrangian time integrals

vanishes since the variation of geometric parameters such as R(t) over

past times is no longer relevant.

The simplifications that the Newtonian stress relation allow in

the model system are substantial. For the T-equation in the form of

(111.41), the elastic integrals, those multipled by C0 , are identically

zero. The cancellation of terms in the integrands I1 V 12, and 13 which

occurs to leave only the term multiplied by v in (111.41) Is best seen

in expression (A.16). The distinction between term like
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t2 N~~r~XnH~r)L(n-2) d-r'

and

L JN(r--r')X U(H.r')L' (n-5)d-r 1

disappears for the purely viscous case since both are now equal to

laX n(H,r)L(a-4)

Terms containing X n and Zn cancel completely, and only the terms in-

volving Tn remain. It is then straightforward to transform the Lagrangian

purely viscous T-equation to the Eulerian result (111.27).

+ R (!2 ~ aT T2
at ar r ~--nn1

The tangential stress condition (111.46) is even more easily re-

duced to the diasired viscous limit. The distinction between terms such

as

a, 1J '1 di:'

and

j T

vanishes in this case and (111.32) obtains directly.

IF
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The purely viscous normal stress balance Is more difficult to

produce from the non-Newtonian expression. Pirste Pv (III.") must be

obtained for the Netonian modulus In Eulerian coordinates then the

result can be employed in the amplitude equation (111.45). In equation

(111.44) most of the termn in the two time integrals will cancel in the

viscous limit.* When there is no externally imposed flow. the result

is

viscous

P (B-O.-r)/p -P (vinR.t)/p (A.38)

-V LT V(n)i

ar n+1 (R)C

Using the viscous T-equation (111.27)

aT mA 2a
-r' ] +v{7-y-2+) 2

and spatially Integrating by parts

n~j) (j) )(j)T(s~t)dS

+ nV Tthis
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APPENDIX B: o(ec) Terms

B -1 Introduction

The validity of the present analysis, which is restricted to

"small c", obviously depends upon that small parameter. One way to

evaluate the radius of convergence of the analysis is through experi-

mental trials and these seem to indicate good agreement for deforms-

tions which are substantial fractions of the overall bubble radius

(see Figures 24-27). Previously published comparisons of the non-

linear analysis of Chapman and Plesset (1971) with linearized results,

these for inviscid fluids, are encouraging since they show good agree-

ment until the final stages of collapse. Analysis can also give some

estimate of the range of validity of a linearization without the need

N for solution of the full, nonlinear, problem through the generation of

the neglected terms and determining the conditions under which they are

small compared to the terms which are retained.

The nonlinear terms which are dropped in the derivation of the

T-equation (111.41) from the exact vorticity equation (22) are terms

of second order in t. Such second order terms are also quadratic in

the spherical harmonics, which removes the separability of the *qua-

tion into an (r,t)-dependent function and an angularly-dependnt one.

This, in turn, prevents the manipulation which totally removed the

angular dependence from the final expression (see equations A.5 & A.13)

and the resulting independence of this equation from tbose for any

other value of the index n. Thus, the explicit evaluation of the

next term in the expansions for velocity or pressure (equations 111.16,

c Q00
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17) 15 considerably sore complicated than that for the 0(e) term.

Since both the full nonliniear problem and the 0(W) problem are so dif-

ficult, the error introduced by the nonlinear terms Is estimated by

evaluating then for the values obtained from the linear analysis.

B.2 Convection and Inertia

The nonlinear terms in the LBS of the vorticity equation which

vere neglected are

(+ ) w- V (V + v )(B.1)
-V_ -p -- v -p

and represent convected. inertial phenomena. They also bring the poten-

tial velocity field V pInto the analysis for vorticity. The expressions

1 for each component of the velocity and vorticity are given in Section

III and again in Appendix A (111.19, 111.28, A.1, 111.21, A.4). A

double summation over the lover index on the spherical harmonics is

now necessary. A new symbolism is adopted to insure the explicit reten-

tion of both values. Let "k" be one subscript and "I" the second and

let v be the total 0(e) velocity.

i!V + v (B.2)

Then, this means

RV - k+2 (a + i 3 33(1k), (2) (k k1) + (Tk W=-

M(3.I
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I For convenience, the potential contribution Is represented through

R k+2 (4

C) (a.k + ak ~

* This symbolism can be used to express the 0(ez) terms in the Bulerian

frame as

[v k -w (3.5)

*k I

r + 'jT~ ?C3 ~inI

a# a a# ae

- (3.6)

T a

r~kn I a

By k a, I , ByIeY
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[yk (B.7)

a1 a Tt BY

2T B a O 1e ar1

I 1y I _9y_ + cote BY 4J

(B.8)

'Lk lv1 0

Tk B
r sine af

(IT O-r r +

+ 0

{ -- (cot6 i.
r +1 sa

jl - -1



'95

f [ k +mt)1 - (3.9)

L k I Ttt (Tk "T.+-) + Ck]Yk( *i"  T'

+ + (I-Ck (1T

Byk 32Y£ 1 ayk 32y a.y

[-- We + sj--r - -j - cote 3

* • )- (3.10)

T k  B 1  Y B yt
+ i'- ( :"+  1T (!f + -o0 e ) -i- 1]

Ir2l 1inB 3# r 1+1 TO sn6 T

ayk [~ B3I

- (T - + C )T)}

A tractable expression, and one which is still meaningful, re-

sults if axisymeetry is assumed and only one mode Is present. e.g.

k - L - 2. The r- and 0-components of the cross terms are Identically

zero and the #-term Is (B.9, 10)

iI
4-I
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+~ L+ _~ kal

Tk k Ck yvk ___k

(-)(- -) -cote
-rr k+ 1 88e5

B kT k ay k
+(Tk - k+ Ck3

3Bk+Ck) 2Tk BT k 3Yk

B 22 ay BY
rr)(Tae )af

From the sample calculation of Appendix C.2 values for each of

-'these functions can be assigned and the relative magnitude of the convec-

tion terms evaluated, e.g. at r - R (3.11)

Step 110: time - 2.50 x 16- sec

R - 2.42 x 10-1c

i -. 47 x 10 cu/sec

a - 9.5 x 10O- cm

*~1 - -1.863 x 10' cu/sec

, 34t



2 m-8.70 x 10'

-4-x

T(R) -- 1.14 x 10 cu/sec

step #11: time - 2.75 x 10-5 sec

R - 2.46 x 10-1 m

i- 1.41 x 103 cu/sec

_ 9.1 X 10-2 CM

a - 1.943 x 102 cm/sec

a2 ' -8.805 x 10,

3T (R) - -1 x 10* sec-1

4 T(R) - -1.20 x 10' cm/sec

Also at r -R

2 ar
C2 - + 2a R N 10' cm/sec

L2 2+i um-i
R 0+1~ 2 'u 4 x108
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Thus the factors in the second order expression are

312( 2 - 2 + C2 )j 10 cu/sec

r-R

(2 R r) ''2 x 100 cm-lsec- I

r-R

(1.12)

2~ 2 ..& u'. 4 x 10 cm/sec

r-R

n2  2 x 104 sec-cu 1

r-R

- (Y2 " 22] - (' 2 " -Y2)4

9'¥

" {2 x 1011 y2 2(.13)

a2y 23B1 D

+ 8 X 0o(j#- cote 2) :2e

These second terms are to be compared with the inertial term at

first order in t lich are
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{1 a 1. 3 j2(!R2 ay 2
r"t + T I r [i

(B.14)
1 OT T. T ')]S2

Numerical data gives this expression (B.14) a value of about 13 x 10111

ay2/3e at r - R. For these terms, at first order in e. to dominate the

nonlinear, second order terms of (B.13)

c(". 14") > e2 (,,B.13,,) (3.15)

or numerically

C <' 3 x 1021_1 (B.16)

12 x 10 I

To arrive at this result, the common factor aY2/38 has been cancelled

and the other angular terms in (B.13) neglected since they are 0(10*)

or less; they consist of combinations of sine and cosine functions.

For large i values, as in this case, these inertial terms are dominated

by the contributions of C2 and OT/r. When this occurs the requirement

on e becomes

+( Ra I O~T 2 - T
C + 2a ) f Rjia

or
a

+ < 1 (5.17)
Ra'



B-10

B.3 Non-Newtonian Nonlinearities

A second instance for which the importance of second order terms

must be evaluated does not arise from a straightforward expansion of

existing term in the vorticity equation, but from a particular choice

of constitutive model for the stress. Cross terms can arise from the

nonlinearities of convection, co-deformational or co-rotational terms.

One method by which to approximate these contributions while

maintaining the form of the previous results is to employ quasi-linear

expressions, in the sense of Bird, Armstrong and Hassager (Chapter 7).

A Taylor series expansion in convected, co-rotational or co-deformational

coordinates can be employed to approximate the difference in stress

each formalism would predict. In the integral constitutive model the

*strain rate at time T', j(r), or its equivalent can be replaced by

() Y(T) + (T-T') -- (T)
Sconvected( DT

(B.18)

40(r + (r-'c') (.+ ev .P

in the convected case. The present 0(01 ) model already incorporates

an evaluation scheme which is better than the first two term in the

second expression of (B.18) since the actual value of strain rate at

past times is evaluated and included in the analysis. If this evalua-

tion is termed ipresent (W) then another approximation to the coa-

vected strain rate at past times Is

~!



iconvected(r) - preaent(c)(.9

+ C-T)V y

Similar expressions arise when co-rotational contributions are included

zco-rot )- - (-)j()

- convected(TO) (B.20)

+ C(r-')~ ( )-j~

for the vorticity tensor w. And also when co-deformational contribu-

tions are considered

ico-def(-'
(3.21)

Wconvected(T

+ (Tr )[(Yy) T . + ~ ~)

These expens ions are linear In time and can only be accurate as long

as the time derivatives do not change sign.

All of these Instantaneous strain rates will be Integrated over

time In the sam stress expression. Thus, If the Instantaneous dif-

ference between the present strain expression and those including

MWE4~
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convected, co-rotational and co-deformational contributions is small,

the resulting stress differences will also be small. This contrasts

sharply vith any comparison between purely viscous and viscoelastic

stresses because they cannot be validly approximated by taking only

taneous strain rates into account.

By reverting to the Taylor series expansion for the strain rate

as presently employed, three terms emerge which must be less than the

present strain rate

Alconvected' A co-rotational'

and A~fmtnl(B.22)

< present )+(-).;jT

where

%convected -CT)

* 1
aco-rot 1 C~rO[~*~ ( )

Sco-def - T)(y) *4+ (W

The convected difference terms can be represented by the (rr)

-I component

w77"



14
3-13

(V

+ To rr + rsine ..rr

Combining this expression vith those for the full velocity vector

and rate of strain tensor of Appendix A, the derivatives are all on the

order of the particular strain component divided by the local radius,

e.g.

(y 2rr [-2 (T - ;)

(B.24)

+ 2(k+2?(k+3) (R k+2
r r Ck Yk

emerges from (A.9) and (A.28). It can also be shown from the definition

of B (A.2) and (A.13) and (A.14) that! n

a2  aB k-3(T -(  -- ) -k(k-1) k2

+ (k+1) (k+2) (k+3)Zkrk+)(

T k(k 2 +3k+l)
rz 2k+1

.41
.. %t
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which means that

is In the evaluation of the present strain 
rate the (rr) componentj

(v) T 2B
.r -2 aT LB (A.9)

- -2[n(n-l)r n-2 X + (n+l)(n+2)r (n2 ) In

from (A.14). The sample calculation assigns numerical values to the

terms in (3.22), (B.23). (B.26) and (A.9), at r -R (see 5.11)

[i-1.75 x 105 sec-1

u8.4 x 109 seC-2

(B.27)

R 2.4 x 101 c

fi 10' sec/sec

For this case, the convected contribution to the strain rate Is small

when

14i4 _ _i



1.75 x l05
icouvectod '2.4 x 10-1

E-C

1.75 X lOS+ (-r')(8.4 x 10 ' 1 (1.28)

which is true for all T' < T when

e < 1.15 (B.281)

A similar analysis can be carried out for the co-rotational terms.

For the axisyumetric case the necessary calculations show that

S-o 0

w 2 -we 0 0

L 0 0

(B.29)

0

Yrr Yre 0

" re Yee 0

o 0 "

2~

has only four non-sero term, which are given by

J1tI wpq m r. ,
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Err - 2w a# -nE,

(3.31)

The expressions for the vorticity tensor (A.4.) show that

T (1.28)
r

And thus the c condition for co-rotation becomes

. (B.29)

which numerically implies, for this case

c 0.96 (B.291)

Finally, for the co-deformational formalism the only complication

is the relevance of both the potential and v-velocity fields. The

velocity gradient consists of components of the form

Vv PO. 0 B! + C)(30(; r (-0

and the c-condit ion smrges as



or(T')i

< 0.8 (B.311)

B.4 Amplitude Equations

The inaccuracy of the linear approximation applies to the non-

Newtonian expressions in the boundary conditions just as it did for

the vorticity equation. The results are the same as for T, since the

same stress expressions are used to evaluate these quantities at the

surface. However there is one place where these 0(c 2) terms tould becomeV important for the boundary conditions in addition to those for the

T-equation. The unit normal to the surface used to formulate these

conditions is

r a
n r- + -- -c-nBy-N, *

-Rr to 386inO Ws 9

I I The correction to this expression at second order in c is

2 (a n)1B + I b (5.32)

4;.Ln



Thuas the correct ion will be small if

cc2 (5.33)
an

or

c (S.33L)

for these numerical values.
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APPENDIX C

C.1 Method of Solution

The system of equations governing the toroidal field T,(Er)

and the nonspherical amplitude an can be solved through a searis of

relatively straightforward finite difference calculations combined

with linear algebraic techniques. The basic procedure, which allows

simultaneous solution without iteration begins with the calculation of

a "particular" and a "homogeneous" solution to the vorticity equation

for %. The coirect linear combination of these solutions is deter-

mined using both the amplitude equations and finite difference approx-

imations to the nospherical velocity and acceleration. A linear sys-

tem of three equations is solved vhich determine amplitude, velocity

and the proper linear combination simultaneously. Internal consistency,

i.e. convergence, of the solution was checked by systematic variation

of numerical parameters and algorithms within each program segment.

The symbolism employed reflects the restrictions of computer

output and also the discretisation of continuous functions performed

in applying finite difference approxiuations. Spatial variation Is

signified by the index "I" and temporal dependence by a second Index

"J". The spatial grid was generated by specifying the Lagrangian

coordinate I(l) as a geometric series. An initial H value was speci-

fied to be HI and a ratio P. was also chosen s.t.

+ p (C1)

( _"__4"_________
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where 9 (1) - Hi

end I% M 0

The ratio P3 was less than two (2.0). since this was found to be neces-

sary for good approximations of spatial derivatives, and greater than

unity. This lower bound served to concentrate the spatial points in

the vicinity of the bubble surface while still allowing relatively few

steps to span a large spatial range. This large range is desirable for

4 the approximation of the integral term an (see Equation 111.30)

ODJ J -n
(c.2)

~r

S n T(St)dS4 J
R

Trial and error calculations demonstrated that, while the value of

rax necessary for convergence is not large, it would require hundreds

of equally spaced steps of HI to reach that value when H1 is small

enough to insure good approximation of derivatives near B-O. Thus,

this geometric series was used. Convergence could usually be achieved

for values such as

R - 10' cm

' Hi - 10 "1 cm:
(C.3)

PR - 1.5

% -25

where Na is the total number of spatial steps. For these parmeter

M'111111-iip|ij
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values r.x 10-2 ca.

The zero-order problem of determining the radius profile R(t)

was solved In a straightforward manner, employing standard predictor-

corrector methods. The evaluation of the elastic contribution to

stress was simplified by the recursive property of an exponential

memory function explained below. A Simpson's rule approximation of

the stress integral results in (C.4)

t + At

exp (t, - (t + At)) rr(t)dt,
-mJ rr

At.

t rr(t + at) + exp(- r- rr(t)

t

+ exp(- rr-t) J t')

} The R profiles so-generated were then available, along with R and R

values, as inputs to the 0(c) solution. Alternatively, the profile

generated by the data fit explained in Appendix D was also available.

As in the numerical solution of many P.D.Z. when time is meng

the independent variables, the procedure was to evaluate or specify

all quantitites, e.g. ITn(I,J) - T(H.T), for I - 1, 2, ... , ', at

some time step "J". then use those values to generate the corresponding

numbers for the next time, "J + 1". The finite difference approuima-

tion to the T-equation employs a central difference in the time deriva-

tive and a mixed Implicit-explicit weighting of the remainder of the

equation, fT' at J ad J + 1. The function fT results when the
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vorticity equation Is expressed in the form (C.5)

OT _ Xr(1,J+) -)

(C.5)

-fT RAPT. STT 11,12,13)

The weighting was characterized by a relaxation parameter 8T ,

0 < 0 T < 1, where BT - 1 corresponds to a completely explicit algorithm.

This relaxation parameter was among the numerical parameters varied in

early calculations to insure, and then optimize, convergence. Spatial

derivatives were approximated by a two-point central first derivative

4and three-point second derivative. These were chosen, despite the

resulting requirement of small spatial steps, because the resulting

matrix form of the XT-equation allows a non-iterative solution by

Thomas' method.

The algorithm generated from these choices was applied twice.

A "particular" solution, TZ(I) at (J + 1), results when XT(IJ) is re-

tained. A second "homogeneous" solution, DTI(I) at (J + 1), is pro-

duced when the previous XT values are neglected. The linearity of

the equation, allows the general solution at (J + 1) to be expressed

as

TT(I, XRAT) - TZ(I) + ]AT * DT(I) (C.6)

where the factor ZRAT most be determined by boundary conditions. The

"homoneous" and "particular" functions are also sufficimt to

determine the Integral an and pressure term Pv, within thies em unkunow
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factor IMA!. The nomenclature employed Is defined by

2n+1 .(--- [ a MI UI - zz + ZAT *DII

and p

P (H-O,T) PRZ + RAT * DPR

where UIIZ and PRZ obtain for the particular solution TZ and

DI1 and DPR from DTF.

The tangential stress equation (1114.6) can be recast as

yn(j + 1) -fA(an, TZ, DTF, UIIZ, DI1; IRAT; Ri;

(C.7)

past values, physical parameters)

where all the independent variables preceding the first semi-colon are

for time (3 + 1) and

n(j + 1) - _(n + 1) (C.8)

The normal force condition is somewhat more complicated, yielding

o+1)- +(C.9)

f (y a. Q. DI.

M.Z Dft.; XRA T; R4 ,

past values, physical parameters)* 4.
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Various closed integration algorithms are available to give finite

difference approximations to these equations. Bare, four different

algorithms were employed - explicit; simple two-point mixe Implicit

explicit (0BA'07); mixed two and three-point (0.9 07~ 0 u On Sl ad a

modificat ion of a Hamwing predictor-corrector employing four points.

These were all tried, and choices made, once again to insure and

optimize convergence. All algorithms lead to linear equations in

yn( + 1), a(nJ + 1) and XRAT

7 * WA(L + an* WB(L) + XRAT *WC(L) - WD(L) (C.10)

for L -1, 2 and 3. and vhere the coefficients, WA, WB. WC and WID, de-

pend only on pest values, physical parameters and R, i, 19 TZ, DTF,

UMlZ, DlI, PRZ and DPI, i.e. they are effectively constants with respect

to Y n, a n and XRAT. This is a well-posed, determinate system which is

then solved for an(J + 1). Y ) n hT

With these values, all quantities can be updated and the process

repeated for succeeding times.

C.2 SamUl Calculation

TIi ethod of solution is best Illustrated by a ample calcula-

tion. For a purely Newtonian fluid of viscosity 0.10 cp. and the values:
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time step -2.50 x 10-6 see

11 10-8 cm

PH 1.50

initial radius, R. 1.98 x 10-1 cm

initial amplitude, aof 1.27 x 10-1 cm

initial nonspherical. velocity, a - -4.0 x 102 cm/Sec.

The valties at time step #10 were found to be

*1 time - 2.50 x 10-5 sec

R - 2.42 x 10-1 cm

i--1.47 x 103 cu/sec

k--2.21 x 107 CU/Sec2

XT(1.0) -- 1.140 10

I-12 3 4 5

-1.140 -1.141 -1.142 -1.144 -1.147

0310 15 20 25

-1.201 -1.71.2 -2.428 -2.105
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a , -8.702 x 103

a - 9.553 x 10-2

- -1.863 x 103

To calculate these values at time steo #11, first these values are

generated.

t - 2.75 x 10-5 sec

R - 2.46 x 10- 1 cm

R - 1.41 x 10' cm/sec

--2.19 x cm/se 2

i and TRZ - -5.315 DTRF - 0.996

-. 211x1 cmsc

UI1Z - -8.804 x 10' DII - 6.422 x 10

UI2Z - -2.933 x 106 D12 - 2.804 x 102

so that

WA WB WC WD

L - 1 3.39 X 10-2  -6.42 x 101 -1.27 x 10- 2  -5.71 x 101

2 1.016 x 100 8.35 x 101 1.62 x 102

3 9.37 x 10"7 -1.00 x 100 - -9.26 x 10- 2
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which can be used to determine

-- 948 x 103

a - 9.073 x 1-

hAT - -1.17 x 10'

and XT (H-0) -- 1.170 x10

I- 12 3 4 5

-1.171 -1.172 -1.173 -1.175 -1.177

XT(I)

10 10 15 20 25

-1.234 -1.732 -2.499 -2.162

Variation of time step, spatial step and number of spatial steps

was performed with convergence to these amplitude values.



APPENDIX D

Data Analysis

D. 1 Shape and Size Pit

As stated in Section V, from each photograph the equivalent

radius R, and some measure of the nonaphericity of the bubble is de-

sired. The shape of these axisymmetric bubbles is assumed to be well

fit by a series containing up to three nonspherical modes

r(e,4,t) - R(t) + a (t) YO(8,*

(D.1)

+ a Wt Y 0(8,#) + a (t) Y'(8.m

where

Y 204*) - P2 (Cosa) - y(3 s

YT(094) a P (Cosa)

- (5 CosaO - 3ecos)

74-(8,) P4 (cose)

T (35 cos4O 30 cos 36 + 3)

In order to fit this function to the actual bubble Im"g It is alo

necessary to determine the best location for the origin, and center-
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line axis from which r and 0 can be measured.

A
The basic strategy by which a fit can be made does not vary with

a particular procedure. This strategy involves digitally encoding the

location of points on the surface of the bubble in the chosen coordinate

*system, then performing a least square analysis to optimize the parm-

eter values.

1) The simplest procedure employs just two measurements of bub-

ble image, the major axis, which is assumed to be the largest horizontal

dimension and the minor axis, the vertical dimension. These occur at
3

e - 0 and w and 0 - 1 and -, respectively when the contribution of the

third and fourth modes is assumed to be neglibible. If the lengths of

the two axes are labelled I and Xv/2, then values can be determined for

R(t) and a2(t) through

*L - 2R + 2a2 P2 (1)
~(D.2)

- 2R + a2

1w/2 - 2R + 2a2 P2 (0)

- R - a 2 /2

which means that

7So + 2 w/2

im 6

0.2')
to
10a 2 R -

where a3 -a4 0 has been assumed.

I.
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This first procedure can be accomplished directly from the photo-

graph or more accurately by magnifying the image. Magnification was

accomplished by opaque projection. The succeeding three procedures

require the additional accuracy afforded by the projection technique.

2) By guessing the centerpoint of the Image and the axis of

symmetry a polar coordinate digitization becomes possible. The (r,O)

coordinate pairs obtained can then be fit by a linear least squares fit

to the function (D.).

Unfortunately, the lack of fore-aft symmetry (right-left) in

photos such as Figure 28(b) and 28(f) makes the a priorz estimation of

the origin difficult. The location of that point also needs to be fit.

Figure 28 also contains frames which display another feature of

the images which makes analysis difficult. The bubble appears to have

flattened ends in frames (e), (f), (S) and (h). The ends are not

really flat, but are the result of the indentations illustrated in

Figure 9(d) and 9(e) which do not appear in the photos since the interior

of the bubbles is not visible. Thus, editing of the digitized data may

be necessary for some frames. Unlike most fitting procedures wherein

greater confidence can be placed in results for larger umbers of points,

here judgement of "flat spots" is required.

The two methods expected to be moat accurate include a fit to the

origin. They are:

3) The centerlins corresponding to the ais of symetry is fixed

a priorl, then digitized data is fit to generate the best value of R,

82 and the canterpoint on the axis.

4) Same as method 3) with the addition of a fit to 3 da.
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Both procedures. 3) and 4). employed the same data. Careful

esti uation of the centerline was made on enlarged images, which was

made possible by the excellent angular (up-down) symetry of the out-

lines. A first guess of the centerpoint was also made. From this

center lines were drawn radially at 15" to 20" intervals. At the

intersection of these line segments with the surface image, rectangu-

lar coordinates were measured. Rectangular coordinates were employed

because this geometry allows simple transformations when the center-

Ipoint is translated along the axis to improve the data fit. The best

values of the desired amplitudes were then determined by an iterative

nonlinear least squares algorithm which minimized the sum of the square

residues. Trials were run with all the data, and also with editing

for "flat spots".

Results for methods 1), 3) and 4) are shown in Table DI. Here

results are shown, not only for different fit procedures, but also for

different times, different photos at the same time, and for data with

and without editing. Looking first at R values, the variation which

occurs between methods 3) and 4) is seen to be minimal for different

analyses of the same photo. The reproducibility between different

photos is not as good, with a total variation of about 101 for the

five photographs analyzed at 750 ueec for methods 3) and 4). Method 1)

does not agree quite as well with the other two methods employed; the

R values from method 1) are consistently 5-102 smaller than the others,

but do show proper trends.

The &2 values show more variation then the I values due to fitting

procedure and to photograph to photograph reproducibility. Tbere Is no
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TAL! 31. oewiaes of Pittia8 urbo

TI= ism In== 0 *Omm

(VoC) (10m) O14) CQl ) O0c-m)

I5O 1 2 3.00 0.67
3 18 3.16 1.06
4 3.17 0." 0.63 -0.40
3 16 3.17 1.24
4 3.15 0.6 0.83 -0.26

700 1 2 3.25 1.10
3 13 3.36 1.21
4 3.35 0.93 -0.79 0.30

b 2 2 3.20 1.20
3 1 3.33 1.19
4 3.32 1.07 0.04 0.29

€ 1 2 3.30 0.76
3 18 3.51 0.74
4 3.31 0.65 0.17 0.17

750 1 2 3.36 0.33
3 18 3.58 0.38
4 3.58 0.36 -0.19 0.01
3 17 3.55 0.38
4 3.58 0.37 -0.22 0.04
3 18' 3.58 0.42
4 3.56 0.38 -0.22 0.05

b 1 2 3.36 0.66
3 18 3.55 0.99
4 3.S4 0.65 0.52 0.20

c 1 2 3.47 0.33
3 1 3.67 0.54

4 .3 0.52 -0.13 -0.14

d 1 2 3.47 0.76
3 1 3.70 0.34
4 3.70 0.85 -0.30 -0.07

1 1 2 3.15 0.54
3 18 3.41 0.53
4 3.41 0.39 -0.21 0.06

000 2 3.47 0.43
3 1 3.70 0.37
4 3.70 0.23 -4.28 0.23

b 1 a S.3 0.67
3 1 3.21 1U
4 3.71 0.95 -4.53 0.23

7 1 p. I il I I
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pattern apparent in the differences between methods; compare 650 (a)

where method 1) and method 4) agree well, to 750 (c) where 3) and 4)

closely approach one another and 800 (a) where 1) and 3) almost coin-

cide.

Thus, no criteria for the best fitting procedure emerges from

the R and a2 values. The additional amplitudes 83 and a4 are of

little assistance. varying from -0.30 to 40.52 at 750 uisec. As a re-

sult the fitting procedure was chosen on a strictly practical basis.

Method 1) was the simplest to employ and was used in the remaining data.1
analysis.

D.2 Radius Profile

In order to generate R(t) and i(t) values, as well as interpolate

the discrete R(t) data measured by the procedures of the preceding sec-

tion a smooth fit was made to all the experimental data simultaneously.

The shape suggested by the radius data in Figures 22 and 24-27 is that of

a sine wave, so a Fourier series was fit to the numbers. Parameters which

were optimized through a nonlinear least squares analysis were:

to - the initial time at which R(t) m 0

tp - the period of the primary wave

C - the ampltudes of the various waves

for J- 19 2, ... , 5.

The functional form of the wave was
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5 t-t
t Ii wt 1K (D3)°i fit (t) Cj pi

where Ki are integers. The Ki were also varied, and the best fit

usually occurred for

.ii w 2
Y-2m

K3 =3 (D.4)

K -5

and the contribution of these last two waves was small. Here, best fit

means those values for which the sum of the square residues, p I is

at a minimum

n

P2 - I [R(tt) - Ifit(tt)]2  (D.5)

where n is the imber of data points and t is the tine at which tbse

data exist.
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APPENDIX E: Additional Data for Photo Sequences

The camera, tank and laser are oriented so that the lamer enters

the fluid from the right aide in each photograph. The beam is focussed

by the lens to a "spot", manifest as the bright streak in each photo.

This streak is useful as a reference point since it appears at the

center of the original bubble.

Figure 21.
Medium lens 4 1.5 cm from center
Laser: 80.0%, no filter

Figure 22.

Medium lens:
Laser: 80.02, medium filter

Figure 23.

Medium lens

Center to solid wall 11, 0.7 ± 0.05 ca

Laser: 97.02, medium filter

Figure 30.

Distilled water
Lens separation: 8 ca
Laser: 97.0%, no filter
Center to solid wall o 0.7 t 0.05 cm

Figure 31.

Distilled water
Lens separation: 5 ca
Laser: 97.02, no filter
Center to solid vail 0.5 t 0.1 cm

II




